

APPENDIX B

Tables

Table 1

RECONSM SAMPLE ANALYSIS SUMMARY DATA SUMMARY TABLE

DAYTON THERMAL PRODUCTS DIVISION ACUSTAR, INC.
DAYTON, OHIO

Sample I.D.	Probe Hole Number	Depth (Feet)	1,1-DCE (ug/L)	trans-1,2-DCE (ug/L)	cis-1,2-DCE (ug/L)	1,1,1-TCA (ug/L)	TCE (ug/L)	PERC (ug/L)	Comments
Blank-01		1	ND (1)	ND(1)	ND (1)	ND (1)	ND (2)	ND (2)	OC Svatem Blank
Blank-02	}	 	ND(1)	ND(1)	_	ND(1)	(0) (2)		Or bod blank
DSG-01	PH-01	3-4	ND(1)	ND(1)	ND(1)	(1) CN	(2) (8	(2) CN	Co hod bidlik
DSG-02	PH-01	7.5-8.5	10	ND (1)	Δ1	159	120(2)		SOLL GAR
DSG-03	PH-01	13.5-14.5	41	35	100	100	720	2 0	
DSG-04	PH-01	19-20	132	(1) CN	9 (1010	0 0 0	0 0	
DSG-05	PH-01	24-25	i 00	ND(1)	17	3210 355	388	33 G	Soil Gas
DGW-06	PH-01	28-30	1103	ND(1)	106	916	22	40 ND(2)	Soll Gas Groundwater Headspace
20-034		•							
DSG-08	PH-02	3-4 7 - 0 - 7	ND(1)	ND (1)	$\overline{}$	ND(1)	ND(2)	ND(2)	Soil Gas
02G-09	PH-02	12 5-14 5	200		ND(1)	α	15	ND(2)	
Blank-03		•	707 717	_	ND(1)	134	204	33	Soil Gas
DSG-10	PH-02	19-20	(T) (N)		_	M (1)	ND(2)	ND(2)	QC System Blank
DSG-10D	10 HQ	19-20	4264		10	268	385	56	Soil Gas
DSG-11	20 Hd	24-25	17		10	267	382		QC Duplicate (SG)
Blank-04	7	C 7 - F 7	1. CM		ND(1)	ND (1)	11	$\overline{}$	Soil Gas
Blank-05	;	1			ND(1)	ND(2)	ND(2)	$\overline{}$	QC System Blank
DGW-12	PH-02	29,5	115(1)	_	ND(T)	ND(2)	ND(2)	$\overline{}$	QC Rod Blank
DGW-12D	PH-02	29.5	122	. T	LOGS	844	3226	<u> </u>	Groundwater Headspace
DSG-13	PH-03	7,5-8.5	62	10 VIV	105/	74.7	3343	<u> </u>	QC Duplicate (GWHS)
DSG-14	PH-03	19-20	ND(1)	(T) (E)	(T) QN	טמ עלי כו	54 (C) (T)	(Z) (Z)	Soil Gas
DGW-15	PH-03	24-25	2665	(1) (1)	305	ND(4)	ND(2)	٠,	
DSG-16	PH-04	13.5-14.5	89	ND(1)	(L) CN	0 77 6	122	_	Groundwater Headspace
DSG-17	PH-04	19-20	236	ND(1)	7 - 7	337	333) H	מסינין המט
DGW-18	PH-04	24-25	1405	ND(1)	189	4131	5652	_	40.00
Blank-06	!!!	!	ND(1)	ND(1)	(L) GN	(C/CN	1000	-	Groundwarer neauspace
DGW-19	PH-04	29.5-30.5	782	ND(1)	215	3173	5128	ND(2)	Vc blank Groundwater Headspace
DSG-20	PH-05	7.5-8.5	ND(1)	ND(1)	(1) GN	VD / 2)	7.	(0)	(D) (C)
DSG-21	PH-05	19-20	ND(1)	ND(1)		7 (-)	610		
DGW-22	PH-05	24-25	ND(1)	ND(1)	ND (1)	14	87	ND (2)	
Blank-U/		:	ND (1)	ND(1)		ND(2)	ND(2)	_	QC System Blank

Table 1 (Continued)

RECONSM SAMPLE ANALYSIS SUMMARY DATA SUMMARY TABLE

DAYTON THERMAL PRODUCTS DIVISION ACUSTAR, INC. DAYTON, OHIO

Sample I.D.	Probe Hole Number	Depth (Feet)	1,1-DCE (ug/L)	trans-1,2-DCE (ug/L)	cis-1,2-DCE (ug/L)	1,1,1-TCA (uq/L)	TCE (ug/L)	PERC (ug/L)	Comments
								11 /61 /	
R Jank-Ogb	į			•		•			
DSG-23	ρ		(T) (N)	ND(1)	ND(1)	ND(2)	ND(2)	ND(2)	QC Rod Blank
2000		יו ה	200	_	ហ	171	370	_	
1200	FH-05	ν.	814	$\overline{}$	28	1191	1687	12	Soil Gas
DGW-25	90	4-2	225	ND(1)	27	651	816	ND (2)	_
DSG-26	_	1	144	14	209	ND (2)	714	186	SO: 1 Gas
DSG-27	_	1	635	ND(1)	166	15	ND (2)	861	7 (C)
DSG-28	-	6-7	1016	ND(1)	189	20	445	637	Soil Gas
026-29	7	1	15	ND(1)	219	ND(2)	84	15	Soil Gas
DSG-30	Bay K-2	1-2	110	$\overline{}$	9,	52,	627	ND(2)	Soil Gas
Dages	Бау	4	16	_	179	ND(2)	364	347	Soil Gas
Dec-22		•	ND(1)	<u> </u>	ND(1)	ND(2)	ND(2)	ND(2)	OC System Blank
DSG-32	Bay K-Z	ָה ק	010	ND(1)	ND(1)	ND(2)	ND(2)	ND(2)	Soil Gas
756-32	Day K-2		0,	٠.	ND(1)	ND(2)	ND(2)	ND(2)	QC Duplicate (SG)
756-33	Day N-2	֓֞֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֜֜֜֓֓֓֓֓֡֜֜֜֓֓֓֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡	126	ND(1)	214	100	896	ND(2)	
DSG-34	Day 1-3A		T.	ND(1)	175	ND(2)	351	316	Soil Gas
DSG-25	Day 1-3A	0 -	\ \ \ \ \	ND(1)	169	ND(2)	341	307	QC Duplicate (SG)
756-36	Bay I Ju	i 1 C	104	٥	155	ND(2)	258	249	Soil Gas
75-580	DAY 1150	7 Y	154 000	ND (1)	163	ND(2)	301	243	Soil Gas
R] ank-09	Day 1-35	10	208	ON COL	213	7	393	252	Soil Gas
Blank-10			ND(T)	ND(T)	ND(1)	ND(2)	ND(2)	ND(2)	QC System Blank
Blank-11	•		ND(T)	ND(T)	ND(1)	ND(2)	ND(2)	ND(2)	QC System Blank
86-080	DT _ 24	ם מ	(T) QN	ND(T)	ND(1)	ND(2)	ND(2)	ND(2)	QC Rod Blank
DS - 580	DI = 24	0 0	ND(1)	- •	ND(1)	$\overline{}$	ND(2)	ND(2)	Soil Gas
DGW-40	DI - 24	ן נ		NO(T)	ND(1)	ND(2)	ND(2)	ND(2)	Soil Gas
0 t 1800	DT - 24	۷ (ا	ND(T)	ND(T)	ND(1)	$\overline{}$	ND(2)	ND (2)	Groundwater Headspace
707-200	* 5	γ.	(T) ON	ND(1)	ND(1)	$\overline{}$	ND(2)	$\overline{}$	QC Duplicate (GWHS)
771000	١,	7.	812	$\overline{}$	47	73	290	ND(2)	Gas
24-020	Bay K-3	4.6	1076	$\overline{}$	105	167	528	_	Soil Gas
# 1 0 0 0	۲ و ا	,	1455	ND(1)	145	277	714	, 20	Soil Gas
4150	PH-07	7.5-8.5	88	ND(1)	966	ND(1)	415	146	Soil Gas
しならしない	PH-0.	Ņ	13	ND(1)	193	42	231	319	Soil Gas
		ı							

Table 1 (Continued)

RECONSM SAMPLE ANALYSIS SUMMARY DATA SUMMARY TABLE

DAYTON THERMAL PRODUCTS DIVISION ACUSTAR, INC.
DAYTON, OHIO

Sample I.D.	Probe Hole Number	Depth (Feet)	1,1-DCE (ug/L)	trans-1,2-DCE (ug/L)	cis-1,2-DCE (ug/L)	1,1,1-TCA (ug/L)	TCE (ug/L)	PERC (ug/L)	Comments
DGW-46 DSG-47 DSG-48 DSG-49 Blank-12 Blank-13 Blank-14 DSG-51 DSG-51 DSG-55 DSG-55 DSG-60 DSG-61 DSG-63 DSG-63 DSG-64 DSG-65 DSG-65 DSG-64 DSG-65 DSG-65 DSG-66 DSG-67 DSG-67 DSG-67 DSG-67 DSG-67 DSG-67 DSG-67 DSG-67 DSG-67	В В В В В В В В В В В В В В В В В В В	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ND(1) 6154 4683 4683 7185 ND(1) ND(1) ND(1) 11 123188 42530 23 10 11 123188 12310 3367 1251 1291 1291 1291 1291 139 135		130 132 67 67 67 800(1) 159 159 100(1) 159 100(1) 153 100(1) 100(1)	21 396 381 379 ND(2) ND(2) ND(2) 1792 101 101 101 101 1236 ND(2) ND(2) ND(2) ND(2) 1036 140 101 1236 ND(2) N	86 7114 631 409 ND(2) ND(2) ND(2) 1516 33172 733 733 733 733 721 156 643 696 696 696 696 696 696 696 1202 696 696 1202 896 896 896 896 896 896 896 896 896 896	101 ND(2) 21 21 48 ND(2) ND(2) 150 451 37 12 22 37 176 171 113 35 35 46 171 113 35 46 171 171 171 171 171 171 171 172 176 177 176 177 176 177 176 177 176 177 177	Groundwater Headspace Soil Gas Soil Gas Soil Gas Soil Gas QC System Blank QC System Blank QC Ambient Blank Soil Gas
			_	(T) (M)	ND(T)	ND(2)	ND(2)	ND(2)	QC System Blank

Table 1 (Continued)

RECONSM SAMPLE ANALYSIS SUMMARY DATA SUMMARY TABLE

DAYTON THERMAL PRODUCTS DIVISION ACUSTAR, INC. DAYTON, OHIO

Sample I.D.	Probe Hole Number	Depth (Feet)	1,1-DCE (ug/L)	trans-1,2-DCE (ug/L)	cis-1,2-DCE (ug/L)	1,1,1-TCA (ug/L)	TCE (ug/L)	PERC (ug/L)	Comments
DSG-71 DSG-72 DSG-73 Blank-17 Blank-18 Blank-18 DSG-74 DSG-75 DSG-75 DSG-75 DSG-81 DSG-82 DSG-84 DSG-84 DSG-84 DSG-84 DSG-85 DSG-85 DSG-85 DSG-86 DSG-86 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-89 DSG-91 DSG-91	В В В В В В В В В В В В В В В В В В В	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	176 60 146 ND(1) 6 52 52 154 210 127 20 333 ND(1) 8 ND(1) 8 ND(1) 8 1431 578 3 230 ND(1) 8 7 7 7 7		27 2885 NDC(1) N	70 63 63 103 103 103 103 103 104 105 106 106 107 108 108 109 109 109 109 109 109 109 109 109 109	156 156 ND (2) 10 10 10 10 10 10 10 10 10 10	ND (2) (2) (3) (4) (4) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Soil Gas Soil Gas Soil Gas OC System Blank OC Rod Blank OC Rod Blank Soil Gas
		1				•) 	מימייות אין

Table 1 (Continued)

RECONSM SAMPLE ANALYSIS SUMMARY DATA SUMMARY TABLE

DAYTON THERMAL PRODUCTS DIVISION ACUSTAR, INC.
DAYTON, OHIO

Sample I.D.	Probe Hole Number	Depth (Feet)	1,1-DCE (ug/L)	trans-1,2-DCE (ug/L)	cis-1,2-DCE (ug/L)	1,1,1-TCA (ug/L)	TCE (ug/L)	PERC (ug/L)	Comments
DSG-96	Rav H-13	7-6	,	¥	١ ٠				
76-55U		F C Y	1 7	•	_	83	ND(2)	11	Soil Gas
0000	1		* • • • • • • • • • • • • • • • • • • •	ND(T)	_	869	38	29	Soil Gas
Diank-21	! !	1	ND(1)	ND(1)	ND(1)	ND(2)	ND(2)	_	OC System Blank
DIGITA-22			ND(1)	ND(1)	$\overline{}$	9	ND(2)	_	OC Rod Blank
000		0-1	9	ND(1)	ND(1)	11	24	_	Soil Gas
していません		3-4	ND(1)	ND(1)	ND(1)	ND(2)	ND(2)	ND (2)	Soil Gas
001-00		6-7	49	ND(1)	ND(1)	30	ND(2)	•	Soil Gas
DSG-101	Bay K-1	0-1	ND(1)	ND(1)	11	ω	83	_	Soil Gas
701-030		4-6	ND(1)	ND(1)	64	10	206		Soil Gas
Dag-103		_	9	$\overline{}$	145	13	323	ND (2)	Soil Gas
and	; •	!	308	ND(1)	ND(1)	ND(2)	ND(2)	· —	Ambient Inside
104		,	ć	•				•	Building*
DSG-10F		T .	بر ن د	_	ND(1)	367	12	10	Soil Gag
0011000	Bay 6-12	4-5	152	$\overline{}$	ND(2)	1993	15	ND (2)	Soil Gas
DSG-106		6-7	2108	ND(2)	13	2536	63	270	Soil Gas
DSG-106D	Bay G-12	6-7	2118	ND(2)	13	2538	63	266	OC Dublicate (SG)
Blank-23		1 .	ND(1)	ND(1)	ND(1)	ND(2)	ND(2)	ND (2)	stem Blan
000		0-1	3794	ND(1)		2968	34	157	98
DSG-108		3-4	ND(1)	ND(1)	ND(1)	3380	31		Soil Gas
DSG-109	Bay H-12B	6-7	7388	ND(1)	ND(1)	3630	30	81	Soil Gas
0.000		0-1	ND(1)	ND(1)	$\overline{}$	123	71	ND (2)	Soil Gas
0.00		† r	11.	ND(1)	$\overline{}$	48	23	ND (2)	Soil Gas
DSG-112) ·	777	ND(1)	ND(1)	65	ND(2)	10	Soil Gas
DSG-117		1.	n	ND(1)	†	30	277	232	Soil Gas
111111111111111111111111111111111111111		ا ا ا	(T) QN	ND(I)	ND(1)	ND(2)	ND(2)	ND(2)	Soil Gas
036113		/0	ND(1)	ND(1)	9	15	30	82	Soil Gas
Didik-24A	[1 [ND(1)	ND(1)	$\overline{}$	ND(2)	ND(2)	ND (2)	QC System Blank
Didnk-245	:	!	(I) QN	ND(1)	ND(1)	ND (2)	ND(2)	ND (2)	Svater
D1411K-25	•		15	ND(1)	$\overline{}$		ND(2)	ND (2)	OC Rod Blank
DOGITTO	-	0-1	<u>ب</u>	ND(1)	32		126	15	Soil Gas
DSG-117	Bay I-1	3-6 4-6	ND(1)	ND(1)	82	ND(2)	190	13	Soil Gas
חשפודו	H	6-7	ND(1)	ND(1)	82	ND(2)	166	ND(2)	Soil Gas

Table 1 (Continued)

RECONSM SAMPLE ANALYSIS SUMMARY DATA SUMMARY TABLE

DAYTON THERMAL PRODUCTS DIVISION ACUSTAR, INC. DAYTON, OHIO

Sample I.D.	Probe Hole Number	Depth (Feet)	1,1-DCE (ug/L)	trans-1,2-DCE (ug/L)	cis-1,2-DCE (ug/L)	1,1,1-TCA (ug/L)	TCE (ug/L)	PERC (ug/L)	Comments
DSG-119	Bay H-11	0-1	16	ND(1)	ហ	767	23	38	Soil Gas
DSG-120		3-4	11	ND(1)	ND(1)	413	31	19	
DSG-121		6-7		ND(1)	4	295	104	19	
DSG-122	NE-24	9-10	_	ND(1)	ND(1)	ND(2)	ND(2)	ND(2)	Soil Gas
DSG-123	\sim	19-20	ND(1)	ND(1)	ND(1)	14	() () () () () () () () () ()	116	
Blank-26			<u> </u>	<u> </u>		ND(2)	ND(2)	ND(2)	S
Blank-27	ł (4 4 1 1	<u> </u>	ND(1)		ND(2)	ND(2)	ND (2)	System
DGW-124	NF=2A	<u> </u> ဂ		<u> </u>		ND(2)	ND(2)	ND(2)	QC Rod Blank
DSG-125	SE-24	10-11	ND(T)	_ 、	ND(1)	55	19	278	Groundwater Headspace
DSG-126	SE-24	10-01	_ 、	_ 、		ND(2)	ND(2)	ND(2)	Soil Gas
DGW-127	SE-24	24-25	_ <	_ 、	<u> </u>	ص ا	ND(2)	ND(2)	Soil Gas
DGW-127D	SE-24	24-25			ND(T)	~ (ND(2)	ND(2)	Groundwater Headspace
Blank-29	, , , ,			٠,		/	ND(2)	ND(2)	Duplica
Blank-30	1	ı	(T) (N)	_ 、	ND(1)	ND(2)	ND(2)	ND(2)	QC System Blank
Blank-31	;			_	_ ,	ND(1)	ND(1)	ND(2)	
Blank-32			(T) (N)	4 T	ND(1)	(T) QN	ND(1)	ND(2)	od Blan
DSG-128	-	1 -	0 4	ND(T)	ND(1)	ND(1)	ND(1)	ND(2)	¥
021 020	4 F	T - C	4042	ND(T)	328	249	971	6347	
086-130	4 F	# C Y	V •	ND(T)	384	310	780	5340	
186-131	DAY 110	0	13240	(T) QN	774	779	639	4459	Soil Gas
DSG-132	9 (l c	ν.		9	ω :	693	461	
758-132	9 (74-75	3.T3	(T) ON	13	16	175	733	Soil Gas
761-580	9 (0 0	7.7	ND(T)	57	43	2002	199	Groundwater Headspace
756-135	9 (1 (•	ND(T)	ω ·	176	175	104	Soil Gas
701 700	י פ	N C	32623	ND(T)	167	739	460	1905	Soil Gas
	י פ	N	418	ND(1)	14	452	85	474	Groundwater Headspace
DGW-136D	9	N	316	ND(1)	15	561	92	499	OC Duplicate (GWHS)
	ļ	1	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	OC System Blank
ب ا	!	i !	ND(1)	ND(1)	ND(1)	ND(2)	ND (2)	ND(2)	System
Blank-35		1		ND(1)	ND(1)	ND(2)	ND(2)	ND(2)	Rod Bla
SG-137	Bay J-7	7.5-8.5	10280	ND(1)	136	797	1086	196	Soil Gas
BLANK-36	į	{ 	198	147	49	64	51	27	Ambient Air
		1							

Table 1 (Continued)

RECONSM SAMPLE ANALYSIS SUMMARY DATA SUMMARY TABLE

DAYTON THERMAL PRODUCTS DIVISION ACUSTAR, INC. DAYTON, OHIO

Sample I.D.	Probe Hole Number	Depth (Feet)	1,1-DCE (ug/L)	trans-1,2-DCE (ug/L)	cis-1,2-DCE (ug/L)	1,1,1-TCA (ug/L)	TCE (ug/L)	PERC (ug/L)	Comments
DSG-138	ט	6	25054	ND (1)	357	1000	1036	278	
DGW-139	ט	4-2	823	ND(1)	127	146	1150	ο α α σ	Groundwater Hondenson
DSG-140	ט	- 1	185	· •	21.	(C) CN	9 5	١ -	Groundwarer neguspace
DSG-141	כי	ŧ	3083	ND (1)	500	2 00	, v	(2)(2)	מסרדו קשמ
DSG-142	ני	- 1	3214		23.4	,,,	7 7	(x) (r)	SOLL GAB
DSG-143	ט	- 1	7564	-	165	24.	400	7.0	SOLL GAS
DSG-144	Bay J-4	3-4	10753	ND(1)	205	0 tr C	1032 675	07	SOLL GAR
DSG-145	ט	6-7	14520	ND(1)	212	348	787	174	0011 GBS
DSG-145D	ט	6-7	14479	_	213	351	788	178	`
Blank-37	:	!!	14	_	ND (1)	ND(2)	ND (2)	ND (2)	OC System Blank
Blank-38	!	:	ND(1)		ND (1)	ND(2)	ND (2)	ND (2)	OC System Blank
Blank-39	,	1	ND(1)	_	ND(1)	ND (2)	ND(2)	ND(2)	OC Rod Blank
DSG-146	Н	1	7540	$\overline{}$	247	195	573	4212	Soil Gas
DSG-147	Н	1	12445	$\overline{}$	341	297	772	5959	SO - 1 - 0 S
DSG-148	Н	1	17329	_	310	322	734	4357	SO: 1 Gas
DSG-149	Н	0-1	262	_	32	38	. 29	525	SO 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DSG-150	Н	1	2658	_	49	254	, ru	202	2000 C CON
DSG-151	Н	6-7	3811	ND(1)	89	402	28	186	SO: I Gas
DSG-152	Н	1	237	_	ଟ୍ୟ	99		184	
DSG-153	Bay I-8	3-4	907	_	7	121	9 00	, c	SOLL GREE
DSG-154	Н	6-7	1580	-	· α	159	84	1 6	SOLL GRE
ank	!	1	ND(1)	ND(2)	ND (1)	ND (2)	ND (2)	ND (2)	1 0
VOC B-1	Voc	1	$\overline{}$	ND(1)	ND(T)	ND (2)	10(=)	(C) CN	Vert
	Blower #3					\ _ \	•	(2)	,
VOC B-2	voc	[ND(1)	ND(1)	ND (1)	ND (2)	VD (2)	ND(2)	Air West Semple
	Blower #4		•		_\	(1)	(4)	(2) (1)	7110
DSG-155	Bay J-6	1	18464	_	480	1527	1704	0 11 0	
DSG-156	Bay J-6	-	19391		338	0711	7000	700	
DSG-157	Bay J-6	- 1	20790) () () (777	707	0 U	
DSG-158	Bay J-8	0-1	174	ND(1)		2 0	15.0	0 0	SOLL GAS
DSG-159	Bay J-8	1	349	-) E	642	112	0 6	
DSG-160	Bay J-8	1	551	-	4	7 0	105) c	SOLL GRE
DSG-160D	Bay J-8		542	<i>-</i>	43	, 69.1	103	1 0	
		٠		-	<u>:</u>	1	1	7	

Table 1 (Continued)

RECONSM SAMPLE ANALYSIS SUMMARY DATA SUMMARY TABLE

DAYTON THERMAL PRODUCTS DIVISION ACUSTAR, INC. DAYTON, OHIO

I.D.	Number	Depth (Feet)	1,1-DCE (ug/L)	trans-1,2-DCE (ug/L)	cis-1,2-DCE (ug/L)	1,1,1-TCA (ug/L)	TCE (ug/L)	PERC (ug/L)	Comments
Blank-41	;	1	_	~	ND (1)	ND (2)	(0) (1)		1000
Blank-42	į	1		_	(L) CN	(C) CN	(2) (2)		Oc blank
Blank-43	-	;	ND (1)	\sim	ND (1)	(2) QN	ND (2)	(2) CN	Or bod blank
DSG-161	LW-1	10-11	_	. ~	(1) (1)	(2)(2)	(C) CN		AC ACC BIGIN
DSG-162	LW-1	20-21	•	-	(T) CN	ND (2)	(7) ON		SOLL GAR
DGW-163	LW-1	24-25	ND(1)	ND(1)	ND(1)	ND(2)	0 6	ND (2)	SOLL GAB Groundwater Headenace
DGW-164	IW-1	30-31	ND(1)	\sim	ND(1)	9	10		dwater
736-165	T.W. 7	10-11	, t / dw		•				
DSG-166	1.W.T	20-21	ND(1)	(T) (N)	ND(1)	ND(2)	ND(2)	ND (2)	Soil Gas
DGW-167	C-18.T	24125	ND (1)	ND(T)	ND(1)	ND(2)	ND(2)	ND(2)	Soil Gas
991-980	1 1 1 1 1	27-77	ND(1)	ND(T)		13	ND(2)	ND(2)	Groundwater Headspace
001-000	7 F	10-00	(T) (N)	ND(1)	ND(1)	ND(2)	ND(2)	ND(2)	Soil Gas
DC8-120	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17-07	ND(T)	ND(1)	19	ND(2)	21	ND(2)	Soil Gas
ひとに からび	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24-25	ND(T)	0.0	251	ND(2)	155	ND(2)	Groundwater Headspace
B) = 7 / 7 / 7	1	67-47	(T) QN	m	269	ND(2)	159	ND(2)	QC Duplicate (GWHS)
DSG-121		1 .	(T) QN	ND(I)	ND(1)	ND(2)	ND(2)	ND(2)	Oc Blank
DSG-172	121	11-01	ND(T)	ND(1)	ND(1)	ND(2)	ND(2)	ND (2)	Soil Gas
777	1	17-07	ND(T)	ND(1)	ND(1)	ND(2)	ND(2)	ND(2)	Soil Gas
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	; ;;	74-7 2	ND(T)	ND(I)	27	11	86	ND(2)	Groundwater Headspace
D3G-1 /4	VOC Blower #3	1	ND(1)	ND(1)	ND(1)	ND(2)	12		Soil Gas
DSG-175		1	ND(1)	ND(1)	ND (1)	ND(2)	10	ND (2)	
	Blower #4) I	(1)	1
Blank-45	 	1	ND(1)	ND(1)	ND(1)	ND(2)	_	_	OC System Blank
Drailk-40	! !	1	ND(T)			ND(2)	_	ND(2)	OC System Blank
Blank-4/	1	1	ND(1)			ND(2)			OC Bod Blank
DSG-176	MG-1	10-11	ND(1)		ND(1)	ND(2)	ND(2)	ND (2)	Soil Gas
DSG-177	MG-1	20-21	ND(1)			ND(2)	-	_	
DGW-I/8		24-25	ND(1)		ND(1)	ND(2)	-	118	Groundwater Headspace
DOKE	TCA Tank	 	15			8184	11,	19	Water from Catch
ı									Basin

Table 1 (Continued)

RECONSM SAMPLE ANALYSIS SUMMARY DATA SUMMARY TABLE

DAYTON THERMAL PRODUCTS DIVISION ACUSTAR, INC.
DAYTON, OHIO

Sample I.D.	Probe Hole Number	Depth (Feet)	1,1-DCE (ug/L)	trans-1,2-DCE (ug/L)	cis-1,2-DCE (ug/L)	1,1,1-TCA (ug/L)	TCE (ug/L)	PERC (ug/L)	Comments
DSG-179	LD-1	10-11	12		ND (1)	1775	22	292	Soil Gas
DSG-180	1 .	20-21		$\overline{}$	10	9020	21	1150	
1001	LU-I Mer	24-25	<u> </u>	ND(1)	ND(1)	261	ND(2)	68	Groundwater Headspace
756-182	NELLZ	T7-07	<u> </u>	<u> </u>	ND(1)	თ	ND(2)	14	Soil Gas
DGW-184	NEL-Z	77-07	<u> </u>	<u> </u>	ND(1)	32	12	43	Soil Gas
DGW-184D	NEL-2	24-25	ND(T)	ND(1)	ND(1)	80 t	σ ·	62	Groundwater Headspace
Blank-48)			(T) CN	3/	10	57	OC Duplicate (GWHS)
Blank-49	;	1	ND (2)		() (N	(Z) (N)	(X) (X)	ND (Z)	Oc Blank
Blank-50	1	-	ND(2)		(C) CN	(A) (A)	(z) CN	(Z) (Z)	Oc System Blank
DSG-185	LD-2	10-11	26,	ND(2)	7 (2)	4463	(v) (v)	786 786	CC Rod Blank
DGW-186	LD-2	24-25	270	_	13	33786	118	1149	Groundwater Headanace
DSG-187	MG-2	10-11	ND(2)	$\overline{}$	ND(2)	0	ND (2)	ND (2)	Soil Gas
DSG-188	MG-2	20-21	ND (2)	_	ND(2)	12	ND(2)	11	SOIT GAR
DGW-189	MG-2	24-25	ND(2)	$\overline{}$	ND(2)	ND(2)	ND(2)	ND(2)	Groundwater Headenace
DGW-190	PH-0/D	24-25	$\overline{}$	$\overline{}$	24	16	25	26	Groundwater Headspace
DGW-190D	U/U-H4	24-25	<u> </u>	ND(2)	31	20	26	29	OC Duplicate (GWHS)
DIGIIK-DI	!	1	_	$\overline{}$	ND(2)	ND(2)	ND(2)	ND(2)	OC System Blank
Blank-52		! ! !	ND(1)	$\overline{}$	ND(1)	ND(2)	ND(2)	ND(2)	OC System Blank
DEMIKESS DEMETOT	ון ה רון ה	1 2	•	<u> </u>	ND(1)	ND(2)	ND(2)	ND(2)	Rod Bla
חנפו-אסת	F13-24	24-45		<u> </u>	ND(1)	ND(2)	ND(2)	ND(2)	Groundwater Headspace
DGW-192	PT - 24	24-63	_ `	<u> </u>	ND(1)	ND(2)	ND(2)	ND(2)	QC Duplicate (GWHS)
704 ::02	£7_03	76-06	ND(T)	ND(1)	62	ND(2)	1349	ND(2)	Groundwater Headspace
Blank-54	!	1	•	٠.	•		,		(D)
DGW-193	WW-1	10-11		~ <	ND(T)	(Z) (Z)	20	ND (2)	OC System Blank
DSG-194	WW-1	20-21	ND(1)	ND(1)	ND(1)	ND(2)	(V) CN	ND(2)	Soil Gas
DGW-195	WW-1	24-25	_	. —	ND (1)	ND (2)	ND(2)	ND (2)	Groundwater Headspace
							•		

⁻ Groundwater sample collected at 30 to 31 feet below the surface. - Groundwater headspace analysis. - Not Detected above 1 or 2 parts per billion background. D GWHS ND

QC - Quality control. SG - Soil gas analysis. ug/L - microgram/Liter.

Table 2

ANLYTICAL RESULTS - VOC ANALYSES GROUNDWATER SAMPLES COLLECTED USING RECONSM

ACUSTAR, INC. DAYTON THERMAL PRODUCTS, INC.

Location	Chloroform	1,1-DCA	1,2-DCA	1,1-DCE	t-1,2-DCE	Tetrachloroethene	1,1,1-TCA	1,1,2-TCA	TCE	Xylenes
W-1	ND <5	ND<5	ND<5	¥D<5	ND <5	ND <5	80 cs	ND<5	NO.55	No.5
PL-24	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	. SO S	\$ Q	;	Z> (M
PL-24 (2)	ND <5	ND<5	ND<5	ND<5	ND<5	ND<5	£ € €	. S	S	. S
PH-03	5.4	700	45.7	42.8	200	12.9	200	17.9	006	ND<5
PH-04A	ND <5	400	6.8	19	900	ND<5	500	9.6	800	KD <5
PH-04B	ND<5	300	13	18.9	900	6.9	500	8.6	200	ND<5
PH-06	7.3	65	ND<5	ND<5	200	21	700	14	700	ND<5
₽-H	ND<5	8.3	ND<5	ND<5	ND<5	390	160	ND<5	430	ND<5
GV-1v	ND<5	5.8	ND<5	ND<5	ND<5	200	ĸ	ND<5	002	ND<5
GV-10V	5.9	89	ND<5	ND<5	ND <5	220	270	ND<5	130	ND<5
7-L	ND<25	180	ND<25	ND<25	ND<25	89	120	ND<25	122	MD<25
NE-24	ND<5	ND<5	ND<5	ND<5	ND <5	200	100	ND<5	55	ND<5
NEL-2	ND<5	ND<5	ND<5	ND<5	ND<5	190	63	ND<5	59	ND<5
SE-24	ND<5	ND <5	ND<5	ND <5	ND <5	ND<5	21	'n	5	ND <5
MG-1	ND <5	ND <5	ND<5	ND<5	ND<5	310	ND <5	ND<5	ND<5	ND<5
MG-2	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
LD-2	ND<5	2,500	280	360	ND<5	7.0	1,200	9.6	140	ND<5
LW-124	ND<5	ND<5	ND<5	ND<5	ND <5	ND <5	28	ND<5	180	ND<5
LW-130	ND<5	ND <5	ND <5	ND<5	ND<5	ND <5	31	ND<5	150	ND<5
LW-224	8.2	130	ND <5	ND<5	ND<5	7.8	57	ND<5	5	6.7
LW-324	ND <5	ND <5	ND<5	ND<5	ND <5	ND <5	ND <5	ND <5	007	ND <5
LW-330	ND <5	ND<5	ND<5	ND<5	ND<5	ND<5	ND <5	. S> QN	2.000	\$ Q X
LW-424	ND <5	33	ND<5	15	13	ND <5	130	12	800	ND<5

^{1,1-}DCA 1,2-DCA 1,1-DCE 1,2-DCE t-1,2-DCE

^{1,1-}dichloroethane. 1,2-dichloroethane. 1,1-dichloroethene. 1,2-dichloroethene. trans-1,2-dichloroethene. 1,1,1-trichloroethane.

APPENDIX C

Environmental Audit Data Base Review for Zip Code Areas 45404 and 45414 Dayton, Ohio

THE FED REPORT

REPORT PROPERTY ADDRESS:

DAYTON 1600 WEBSTER STREET DAYTON, OH 45404 County: MONTGOMERY

	Section
SUMMARY	. I
FEDERAL REPORTS	
NPL	. 11.1
FINDS	. 11.2
CERCLIS	. 11.3
RCRA FACILITIES	. 11.4
OPEN DUMP	. 11.5
EMERGENCY RESPONSE NOTIFICATION SYSTEM	. II.6
MISIDENTIFIED RECORDS SEARCH	III
NOTE: The entries in this Appendix are numbered as the on Plate 1.	ey appear

I. SUMMARY

This Report is a compilation of federal environmental data which identifies environmental problem sites and activities from the records of the United States Environmental Protection Agency (US EPA). The data contained in this Report is the result of a search by EAI's Environmental Data Systems of the following US EPA records:

- 1. National Priorities List (NPL)
- 2. Facility Index System (FINDS)
- 3. Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS)
- 4. Resource Conservation and Recovery Act (RCRA) Notification System
- 5. Solid Waste Facilities Not In Compliance with RCRA Subtitle D Criteria (OPEN DUMP SITES)
- 6. Emergency Response Notification System (ERNS)

A search of these databases identified: 0 NPL sites, 145 FINDS sites, 8 CERCLIS sites, 141 RCRA facilities, 1 OPEN DUMP Sites, and 8 ERNS sites.

The records of each of the foregoing sites and operators are contained in Section II of this report. The listed Sites are located within the zip code area or city stated at the beginning of each report sub-section. Section III contains 1 misidentified records of sites which appear to be located on or near the subject property.

II. REGULATORY INFORMATION
1. US EPA NPL DATABASE

DAYTON 1600 WEBSTER STREET DAYTON, OH 45404 County: MONTGOMERY

The National Priorities (Superfund) List (NPL) is EPA's database of uncontrolled or abandoned hazardous waste sites identified for priority remedial actions under the Superfund Program. A site, to be included on the NPL, must either meet or surpass a predetermined hazard ranking systems score, or be chosen as a state's top-priority site, or meet all three of the following criteria: (1) the US Department of Health and Human Services issues a health advisory recommending that people be removed from the site to avoid exposure; (2) EPA determines that the site represents a significant threat; and (3) EPA determines that remedial action is more cost-effective than removal action.

A search of the 1991 National Priorities List revealed the following Superfund sites located within the stated zip code areas: 45404, 45414

O Sites found for the area specified.

FINDS DATABASE

II. REGULATORY INFORMATION 2. US EPA FINDS DATABASE DAYTON 1600 WEBSTER STREET DAYTON, OH 45404 County: MONTGOMERY

The Facility Index System (FINDS) is a compilation of any property or site which the EPA has investigated, reviewed or been made aware of in connection with its various regulatory programs. Each record indicates the EPA Program Office that may have files on the site or facility.

A search of the 1991 FINDS Database revealed the following sites located within the stated zip code areas: 45404. 45414

FINDS Sites

65. FACILITY ADDRESS

EPA ID#

ENVIRONMENTAL PROCESSING SERVI

OHD000608588

416 LEO STREET DAYTON, OH 45404 Region: 05

Latitude: 394655

Longitude: 0841127

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID #: OHD000608588 Superfund - Hazardous Waste-Superfund Program ID #: OHD000608588

66. SHELL OIL CO DAYTON PLT

OHD000609156

801 BRANDT PIKE DAYTON, OH 45404

Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD000609156

Compliance Data System, Office of Air and Radiation Program ID # : 36450000140

Office of Enforcement and Compliance Monitoring (DOCKET)

Program ID #: 05-79-0067

67. SUNOCO SERVICE STATION

OHD000671818

1448 TROY ST DAYTON, OH 45404

Region: 05

Latitude: 394730

Longitude: 0841000

SUNOCO SERVICE STATION (CONT'D)

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA) Program ID # : OHD000671818

68. SUNOCO SERVICE STATION

OHD000682823

201 VALLEY ST

DAYTON, OH 45404

Region: 05 Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD000682823

69. SUNOCO SERVICE STATION

OHD000682963

7186 MILLER LANE DAYTON, OH 45404

Region: 05

Latitude: 394730

Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID #: OHD000682963

70. OHIO BELL TEL CO SUPPLY WAREHO

OHD000720417

2024 VALLEY ST

DAYTON, OH 45404

Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD000720417

71. SCOTT EDWIN D BROKER

OHD000721027

1820 VALLEY STREET DAYTON, OH 45404

> Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

72. BENDER AND LOUDON MOTOR FREIGH

OHD000772822

1795 STANLEY AVE BLDG 7

DAYTON, OH 45404

Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD000772822

73. GMC DELCO PRODUCTS DIV DAYTON

OHD000817585

1619 KUNTZ ROAD DAYTON, OH 45404

Region: 05

Longitude: 0841023 Latitude: 394726

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD000817585

Permit Compliance System, Office of Water Enforcement and Permits

Program ID # : S114 AD

Compliance Data System, Office of Air and Radiation

Program ID #: 36450000147

74. SUNMARK PETROLEUM MARKETING TE

OHD001722263

1708 FARR DR

45404 DAYTON, OH

Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD001722263

Office of Enforcement and Compliance Monitoring (DOCKET)

Program ID #: 05-00-0399

75. DAYTON ELECTRONIC PRODUCTS

OHD004241220

117 E HELENA ST DAYTON, OH 45404 Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

76. DURIRON CO INC THE FOUNDRY & P

OHD004241550

425 N FINDLAY ST DAYTON, OH 45404

Region: 05

Latitude: 394604

Longitude: 0840903

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004241550

Compliance Data System, Office of Air and Radiation

Program ID # : 36450000112

77. AMCA INTERNATIONAL CORP

OHD004243648

1752 STANLEY AVE DAYTON, OH 45404

Region: 05

Latitude: 394730

Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004243648

78. AMERICAN LUBRICANTS CO

OHD004244547

1227 DEEDS AVE DAYTON, OH 45404

Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004244547

Pesticides and TSCA Enforcement System, Office of Pesticides and

Toxic Substances

Program ID # : 050710H01

Chemicals in Commerce Information System, Office of Toxic Substances

Program ID # : OH0002723

W & W MOLDED PLASTICS INC

OHD004245098

1441 MILBURN AVENUE DAYTON, OH 45404

Region: 05 Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

80. ELECTRO-POLISH CO INC OHD004264198

332 VERMONT AVE DAYTON, OH 45404

Region: 05

Latitude: 394730

Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004264198

PAINT AMERICA CO 81.

OHD004275772

1501 WEBSTER ST

DAYTON, OH 45404

Region: 05 Latitude: 394730

Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD004275772

82. KIMES ROBERT H INC OHD004277240

2030 WEBSTER ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004277240

ESTEE MOLD & DIE INC 83.

OHD004277679

1467 STANLEY AVE DAYTON, OH 45404

> Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD004277679

84. **GAYSTON CORPORATION**

OHD004278156

55 JANNEY ROAD

DAYTON, OH 45404

Region:

05

Latitude: 394730

Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

OHD004278362

85. HOHMAN PLATING & MFG CO

814 HILLROSF AVE

DAYTON, OH 45404

Region: 05

Latitude: 394700

Longitude: 0841036

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD004278362

Compliance Data System, Office of Air and Radiation

Program ID #: 0857040217

86. HOLLANDER INDUSTRIES CORP

OHD004278438

219 KELLY AVE

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD004278438

87. NEFF FOLDING BOX CO

OHD004278446

2001 KUNTZ RD

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID #: OHD004278446

88. DAYTON RUST PROOF COMPANY

OHD004278628

1030 VALLEY ST

DAYTON, OH 45404

Region: 05

Latitude: 394730

Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD004278628

89. BRINKMAN TOOL & DIE INC

OHD004279659

325 KISER ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

90. AGA GAS INC

OHD004279774

1223 MC COOK AVE DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004279774

91. GEM CITY CHEMICALS INC

OHD004472940

1287 AIR CITY AVE DAYTON, OH 45404

Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD004472940

Pesticides and TSCA Enforcement System, Office of Pesticides and

Toxic Substances

Program ID # : 072960H01

92. ARAB TERMITE & PEST CONTROL IN

OHD017944711

801 LEO ST

DAYTON, OH 45404

Region: 05

Latitude: 394730

Longitude: 0841000

EPA Responsible Office(s):

Pesticides and TSCA Enforcement System, Office of Pesticides and

Toxic Substances

Program ID # : 091700H01

93. PAULS GARAGE INC

OHD041060385

2941 VALLEY ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID #: 0HD041060385

94. LABINAL COMPONENTS GLOBE MOTOR

OHD041066325

1784 STANLEY AVE DAYTON, OH 45404

Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

LABINAL COMPONENTS GLOBE MOTOR (CONT'D)

95. DAYTON CASTING COMPANY

OH0056488786

300 KISSER STREET (KISER STREET)

DAYTON, OH 45404

Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Compliance Data System, Office of Air and Radiation

Program ID # : 36450000104

96. DUFF TRUCK LINE INC

OHD060913597

1744 STANLEY AVE DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD060913597

97. BRAINERD MFG CO INDUSTRIES DIV

OHD068953645

1723 WEBSTER

DAYTON, OH 45404

Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD068953645

98. ROBERTS CONSOLIDATED INDUSTRIE

OHD071288039

220 JANNEY RD

DAYTON, OH 45404

Region: 05

Latitude: 394723 Longitude: 0841040

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

FACILITY ADDRESS

99. LESTON CORPORATION OHD072864390

2017 VALLEY STREET DAYTON, OH 45404

Region: 05

Latitude: 394730

Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD072864390

100. ANGELL MANUFACTURING CO INC OHD072873664

1516-20 STANLEY AVE DAYTON, OH 45404

Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD072873664

ARATEX SERVICES INC 101.

OHD072876279

1200 WEBSTER ST DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD072876279

ORBIT MOVERS 102.

969 DEEDS AVE

DAYTON. OH 45404

Region: 05

Latitude: 394730

Longitude: 0841000

COASTAL TANK LINES INC 103.

OHD083371591

OHD074690769

2160 JERGENS RD DAYTON, OH 45404

Region: 05 Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

104. ADVANCED ASSEMBLY AUTOMATION

OHD084755206

314 LEO ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD084755206

105. DIAL MACHINE SERVICE CO INC

OHD093906055

131 KISER ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD093906055

106. SOHIO DAYTON TERMINAL 620

OHD095194684

621 BRANDT PIKE DAYTON, OH 45404

Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD095194684

Compliance Data System, Office of Air and Radiation

Program ID # : 36450000141

Office of Enforcement and Compliance Monitoring (DOCKET)

Program ID #: 05-79-0022

107. GEM CITY SPECIAL MACHINE BUILD

OHD095201513

1425 N KEOWEE ST DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD095201513

108. SPECIALTY SHEET METAL INC

OHD097918395

821 HALL AVE

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

109. GEM CITY STAMPING INC

OHD097922520

1546 STANLEY AVE

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD097922520

110. AMCAST INDUSTRIAL CORP GHR DIV

OHD099020133

400 DETRICKS ST DAYTON, OH 45404

Region: 05

Latitude: 384630 Longitude: 0841025

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID #: OHD099020133

Compliance Data System, Office of Air and Radiation

Program ID #: 36450000019

Office of Enforcement and Compliance Monitoring (DOCKET)

Program ID #: 05-00-0246

111. DAYTON PARTS CO NAPA

OHD103556080

221 LEO ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD103556080

112. PENSKE TRUCK LEASING CO

OHD107623761

1922 LINDORPH DR

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD107623761

PEPSI-COLA OF DAYTON 113.

OHD123387748

526 MILBURN AVE

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

114. LANDMARK INC

OHD980280101

1800 TROY ST

DAYTON, OH 45404

Region: 05

Latitude: 394730

Longitude: 0841000

EPA Responsible Office(s):

Office of Enforcement and Compliance Monitoring (DOCKET)

Program ID # : 05-00-0303

115. DAYTON TERMINAL

OHD980486633

1700 FARR DR

DAYTON, OH 45404

Region: 05

Latitude: 394730

Longitude: 0841000

EPA Responsible Office(s):

Pesticides and TSCA Enforcement System, Office of Pesticides and

Toxic Substances

Program ID # : 008620H01

SENECA CHIEF INC

OHD980611826

403 HOWARD

FINLEY, OH 45404

Region: 05

Latitude: 394730

Longitude: 0841000

EPA Responsible Office(s):

Superfund - Hazardous Waste-Superfund

Program ID # : OHD980611826

* Facility does not appear to be within the area of interest.

117. NORTH SAN LDFL INC

OHD980611875

200 E VALLEYCREST DR DAYTON, OH 45404

Region: 05

Latitude: 394718

Longitude: 0840905

EPA Responsible Office(s):

Superfund - Hazardous Waste-Superfund

Program ID # : OHD980611875

118. AGA BURDOX INC ACETALINE PLT

OHD980793715

1727 FARR DR

DAYTON, OH 45404

> Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Chemicals in Commerce Information System, Office of Toxic Substances

Environmental Audit, Inc.

AGA BURDOX INC ACETALINE PLT (CONT'D)

Program ID # : OH0047425

119. DAYTON CITY OF

OHD981796964

520 KISER ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD981796964

120. TAIT INC

OHD981955776

500 WEBSTER ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD981955776

121. ORBIT MOVERS

OHD982606220

1101 NEGGLEY PLACE AVE

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD982606220

* The street address provided appears to be outside the zip codes

of interest.

122. PENSKE TRUCK LEASING CO LP

OHD982611592

1601 STANLEY AVE

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD982611592

123. DAYTON PWR & LIGHT N DAYTON

OHD982617003

1317 TROY ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Environmental Audit, Inc.

DAYTON PWR & LIGHT N DAYTON (CONT'D)

Program ID # : OHD982617003 Office of Toxic Substances (PADS) Program ID # : OHD982617003

DAYTON WIRE CO

OHD982619959

7 DAYTON WIRE PKWY DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD982619959

* Not able to locate facility using available information.

125. SELLS MIKE

OHD986966489

33 LEO ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Superfund - Hazardous Waste-Superfund Program ID #: OHD986966489

126. DAYTON TRANE

OHD986967966

1441 STANLEY AVE DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD986967966

PRECISION METAL FABRICATION 127.

OHD986968865

191 HEID AVE

DAYTON, OH 45404

Region:

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD986968865

COLUMBIA GAS TRANS-AVONDALE 128.

WANETA AVE S OF HALDEMAN AVE

DAYTON, OH 45404

Region: 05

OHD986975712

COLUMBIA GAS TRANS-AVONDALE (CONT'D)

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)
Program ID #: OHD986975712

129. GLOBE MOTORS DIV OF LCS INC

OHD986979136

1944 TROY ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD986979136

130. GLOBE MOTORS DIV OF LCS INC

OHD986979144

2275 STANLEY AVE

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD986979144

131. UNO VEN COMPANY

OHT400010740

1796 FARR DR

DAYTON, OH 45404

Řegion: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHT400010740

Compliance Data System, Office of Air and Radiation

Program ID # : 36450000111

Office of Enforcement and Compliance Monitoring (DOCKET)

Program ID # : 05-79-0014

Permit Compliance System, Office of Water Enforcement and Permits

132. CCC HIGHWAY INC

OHT400011193

1464 KUNTZ ROAD

DAYTON, OH 45404

Region: 05

Latitude: 394730 Longitude: 0841000

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

133. DAYTON MACHINE TOOL CO

OHD004277802

1314 WEBSTER ST DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004277802

134. DAYTON CLUTCH AND JOINT INC

OHD007862485

2005 TROY ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : 0HD007862485

135. WISE GARAGE INC

OHD007868748

1845 TROY ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD007868748

136. SHEFFIELD MACHINE TOOL CO

OHD012183539

1506 MILBURN AVE

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD012183539

137. NILO CO

OHD054439781

115 VALLEYCREST DR

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

138. DJINNII INDUSTRIES

OHD061709127

302 VERMONT AVE

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD061709127

139. CHILDRENS MEDICAL CTR

OHD071289326

1 CHILDRENS PLAZA DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD071289326

140. ENTEC CORP

OHD161890967

239 E HELENA ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD161890967

* APS MATERIALS INC

0HD982066300

153 WALBROOK AVE

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD982066300

* Facility does not appear to be within the area of interest.

142. DIGITRON DAYTON

OHD982643793

500 WEBSTER ST

DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

143. AIR CITY MODELS AND TOOLS INC

OHD986972123

80 COMMERCE PARK DR DAYTON, OH 45404

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD986972123

144. WATKINS MOTOR LINES INC

OHD986979979

1799 STANLEY AVE DAYTON, OH 45404

> Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD986979979

9. SUNOCO SERVICE STATION

OHD000671719

2001 NEEDMORE RD DAYTON, OH

45414 Region: 05

Latitude: 395048

Longitude: 0841242

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD000671719

10. MEAD IMAGE CENTER

OHD000809947

3908 IMAGE DRIVE

DAYTON, OH 45414

Region: 05

Latitude: 395048 Longitude: 0841242

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD000809947

11. RIECK MECHANICAL SERVICES INC

OHD003861168

5245 WADSWORTH RD DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

FACILITY ADDRESS

HARRIS GRAPHICS CORP BUS FORMS

OHD004202917

4900 WEBSTER ST DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004202917

B-N PLATING 124.

OHD004243457

613 DANIEL ST

DAYTON, OH 45414

Region: 05

Latitude: 395048

Longitude: 0841242

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD004243457

TECH DEVELOPMENT INC 2.

OHD004244851

6800 POE AVE

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004244851

Pesticides and TSCA Enforcement System, Office of Pesticides and

Toxic Substances

Program ID # : OHD004244851

Permit Compliance System, Office of Water Enforcement and Permits

Compliance Data System, Office of Air and Radiation

CHEMINEER INC 3.

OHD004262465

5870 POE AVE

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD004262465

S & G PLATERS INC

OHD004272035

2640 KEENAN AVE DAYTON, OH 45414

Region: 05

Latitude: 395048 Longitude: 0841242

EPA Responsible Office(s):

22

S & G PLATERS INC (CONT'D)

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)
Program ID # : OHD004272035

12. SCHRIBER INDUSTIRES

OHD004273181

4620 WEBSTER ST

DAYTON, OH 45414

Region: 05

Latitude: 395048 Longitude: 0841242

EPA Responsible Office(s):

Compliance Data System, Office of Air and Radiation

Program ID # : 36450080001

13. OMEGA TOOL & DIE CO

OHD004277398

6192 N WEBSTER ST DAYTON, OH 45414

Region: 05

Latitude: 395048

Longitude: 0841242

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD004277398

14. AMERICAN CARCO CORP

OHD004277687

2800 ONTARIO AVE

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004277687

15. YODER INDUSTRIES INC

OHD004277901

2520 NEEDMORE RD

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

PROTECTIVE TREATMENTS INC (CONT'D)

5. PROTECTIVE TREATMENTS INC

OHD004279204

3345 STOP EIGHT ROAD DAYTON, OH 45414

Region: 05 Latitude: 395048

Longitude: 0841242

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004279204

Compliance Data System, Office of Air and Radiation

Program ID # : 36450080096

6. INDUSTRIAL ELECTRIC MOTORS INC

OHD004474524

5131 WEBSTER ST DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004474524

INDUSTRIAL WASTE DISPOSAL CO

OHD004774345

3975 WAGONER FORD RD DAYTON, OH 45414

Region: 05

Latitude: 394854

Longitude: 0841012

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD004774345

Superfund - Hazardous Waste-Superfund

Program ID # : OHD004774345

7. MUSICKS BODY SHOP INC

OHD041598046

3055 STOP EIGHT RD

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD041598046

ERNST ENTERPRISES INC 8. 3361 SUCCESSFUL WAY DAYTON, OH 45414

Region:

OHD044497691

ERNST ENTERPRISES INC (CONT'D)

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD044497691

Compliance Data System, Office of Air and Radiation

Program ID # : 36426090003

Permit Compliance System, Office of Water Enforcement and Permits

17. ERNST ENTERPRISES INC

OHD044505915

4970 WAGONER FORD RD

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD044505915

18. GMC DELCO MORAINE DIV DAYTON N

OHD045557766

3100 NEEDMORE ROAD DAYTON, OH 45414

Region: 05

Latitude: 394900 Longitude: 0841020

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD045557766

Permit Compliance System, Office of Water Enforcement and Permits

Program ID #: N196*BD

Compliance Data System, Office of Air and Radiation

Program ID #: 36450000102
Office of Toxic Substances (PADS)
Program ID #: 0HD045557766

19. PERFECT-A-TEC CORP

OHD054433818

6222 WEBSTER ST DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD054433818

20. INTEGRITY MFG CORP

3723 INPARK CIRCLE DAYTON, OH 45414

Region: 05

OHD056487374

FACILITY ADDRESS

INTEGRITY MFG CORP (CONT'D)

Latitude: 395048 Longitude: 0841242

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD056487374

MIAMI VALLEY INTERNATIONAL TRU

OHD056541055

7655 POE AVE

DAYTON, OH 45414

> Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD056541055

22. CARGILL INC OHD061698676

3201 NEEDMORE RD 45414 DAYTON, OH

Region: 05

Latitude: 395048

Longitude: 0841242

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD061698676

Compliance Data System, Office of Air and Radiation

Program ID # : 36450090131

Pesticides and TSCA Enforcement System, Office of Pesticides and

Toxic Substances

Program ID # : OHD061698676

Chemicals in Commerce Information System, Office of Toxic Substances

Program ID # : 0H007537Y

Permit Compliance System, Office of Water Enforcement and Permits

Superfund - Hazardous Waste-Superfund

23. MCNULTY MOTOR INC

OHD063990089

7030 POE AVE

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

OHD063999577

OHD071272512

OHD074694746

MOORE MK & SONS CO (CONT'D)

24. MOORE MK & SONS CO

5150 WAGONER FORD RD

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Office of Enforcement and Compliance Monitoring (DOCKET)

Program ID # : 05-86-0391

25. SHERWIN-WILLIAMS CO WHSE

3671 DAYTON PARK RD

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Superfund - Hazardous Waste-Superfund

Program ID # : OHD071272512

26. MILES LABORATORIES INC

5600 BRENTLINGER DR

DAYTON, OH 45414

Region: 05

Latitude: 395048

Longitude: 0841242

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD074694746

Compliance Data System, Office of Air and Radiation

Program ID # : 36450000208

27. MAACO AUTO PAINTING & BODYWORK

OHD074704404

3474 NEEDMORE

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD074704404

28. MANFREDI MOTOR TRANSIT COMPANY

OHD077758936

5560 BRENTLINGER DR

DAYTON, OH 45414

Region: 05

Latitude: 395048 Longitude: 0841242

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Environmental Audit, Inc.

MANFREDI MOTOR TRANSIT COMPANY (CONT'D)

Program ID # : OHD077758936

29. MONTGOMERY COUNTY INCIN NORTH

OHD081594293

6589 N WEBSTER ST DAYTON, OH 45414

Region: 05

Latitude: 394710 Longitude: 0841049

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD081594293

Compliance Data System, Office of Air and Radiation

Program ID #: 36450000077

Superfund - Hazardous Waste-Superfund

Program ID # : OHD081594293

Office of Enforcement and Compliance Monitoring (DOCKET)

Program ID #: 05-78-0064

30. AMERICAN HONDA MOTOR CO INC PC

OHD083365411

6400 SAND LAKE RD DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD083365411

31. NEEDMORE SERVICE CTR

OHD083366120

2206 NEEDMORE RD DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD083366120

32. NORTHRIDGE LOCAL SCHOOL DIST

OHD084750165

2011 TIMBERLANDS ST DAYTON, OH 45414

Region: 05
EPA Responsible Office(s):

Pesticides and TSCA Enforcement System, Office of Pesticides and

Toxic Substances

Program ID # : OHD084750165

Environmental Audit, Inc.

OHD093901890

33. EASTERN TANK LINES INC

5536 BRENTLINGER DR

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD093901890

34. LYTTON INC

OHD095203451

3970 IMAGE DR

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD095203451

35. AMERICAN BODY SHOP

OHD121994834

2507 ASHCRAFT RD

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD121994834

36. AGA GAS INC

OHD123277741

3800 DAYTON PARK DR DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD123277741

37. METOKOTE CORP PLT 6

OHD150672509

3435 STOP EIGHT RD DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

38. ALLOYD ASBESTOS ABATEMENT CO

OHD150672749

5734 WEBSTER ST

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD150672749

Office of Enforcement and Compliance Monitoring (DOCKET)

Program ID # : 05-90-E005

Permit Compliance System, Office of Water Enforcement and Permits

39. SHELL SERVICE STATION

OHD980702336

2450 NEEDMORE

DAYTON, OH 45414

Region: 05

Latitude: 395048 Longitude: 0841242

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD980702336

40. DARLENES ONE HOUR CLEANERS

OHD981198930

5901 N DIXIE DR

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD981198930

41. DEMOLITION LDFL

OHD981528839

WAGNER FORD RD AT WEBSTER RD

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Pesticides and TSCA Enforcement System, Office of Pesticides and

Toxic Substances

Program ID # : OHD981528839

42. AMERICAN HONDA MOTOR CO INC RE

OHD981794902

3920 SPACE DR

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

43. VENTURE MFG

OHD982625261

3949 DAYTON PARK DR DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)
Program ID #: OHD982625261

44. VENTURE MFG CO

OHD986967925

3616 DAYTON PARK DR DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)
Program ID #: OHD986967925

45. COLUMBIA GAS TRANS-NORTH DIXIE

OHD986975753

N DIXIE RD 0.2 MI S STOP EIGHT

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)
Program ID #: OHD986975753

46. DURIRON CO INC MODERN IND PLAS

OHD004241436

3337 N DIXIE DR DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)
Program ID #: OHD004241436

47. MILLAT INDUSTRIES CORP

OHD004242657

4534 WADSWORTH RD

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

48. WALL COLMONOY OHD004243689

5251 WEBSTER ST DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD004243689

49. MAZER CORP OHD004473708

2501 NEFF RD

45414 DAYTON, OH

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD004473708

50. CROSSROADS TOOL AND MFG CO OHD004482071

2787 ARMSTRONG LN DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD004482071

51. OLD COLONY ENVELOPE CO OHD041229964

5621 N WEBSTER ST

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD041229964

52. GARNER BROS INC OHD056602329

3361 NEEDMORE RD

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

53. ELDRIDGE BODY SHOP INC

OHD079445094

4625 N DIXIE DR DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD079445094

54. OMEGA AUTOMATION INC

OHD108564949

2850 NEEDMORE RD DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD108564949

55. ENCON INC

OHD122526023

6161 VENTNOR AVE DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD122526023

56. DAYTON DIESEL INJECTION

OHD125494112

3341 N DIXIE DR DAYTON, OH 45414

N, OH 45414 Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

Program ID # : OHD125494112

57. MICAFIL INC

OHD139252266

2608 AND 2609 NORDIC RD

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

OHD170253868

58. BROWNING BODY AND FRAME

9001 DIXIE DR

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD170253868

59. LORD CORP

OHD981793698

4644 WADSWORTH RD

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD981793698

60. BROADWAY COMPANIES

OHD981797673

6344 WEBSTER ST

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD981797673

61. FINDLEY ADHESIVES INC

OHD982206484

4710 WADSWORTH RD DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD982206484

62. ALAN LAF INC

OHD986975035

4530 WADSWORTH AVE

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste (RCRA)

OHD986982841

63. EXECUTIVE MOLD CORP

2781 THUNDERHAWK CT

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD986982841

64. NORTHRIDGE BODY SHOP AND DETAI

OHD986984276

5910 MILO RD

DAYTON, OH 45414

Region: 05

EPA Responsible Office(s):

Hazardous Waste Data Management System, Office of Solid Waste(RCRA)

Program ID # : OHD986984276

145 Sites found for the area specified.

CERCLIS DATABASE

II. REGULATORY INFORMATION 3. US EPA CERCLIS DATABASE

DAYTON

1600 WEBSTER STREET DAYTON, OH 45404 County: MONTGOMERY

The CERCLIS List is a compilation by EPA of the sites which EPA has investigated or is currently investigating for a release or threatened hazardous substances Pursuant to the Comprehensive release of Environmental Response, Compensation and Liability Act of 1980 (Superfund Act).

A search of the 1991 CERCLIS Database revealed the following sites within the stated zip code areas: 45404, 45414

CERCLIS Sites

FACILITY ADDRESS

EPA ID#

157. ENVIRONMENTAL PROCESSING SERVICES OHD000608588

416 LEO ST

DAYTON, OH 45404

County: MONTGOMERY

Facility Type:

Status Undetermined

Ownership Indicator:

Unknown

Classification:

No Determination

Entry Source:

EPA Files

Status:

Has never been on the proposed final NPL 00

Proposed NPL Update #: Latitude:

3947300

Longitude:

08410000

Event Discovery:

EPA, Fund Financed

Actual Completion Date: 01/15/88

Preliminary Assessment:

EPA, Fund Financed

Actual Completion Date: 01/09/89

NFA. At the conclusion of a preliminary assessment, no further action is anticipated for this site or no hazard was identified.

MIKE SELLS 159.

OHD986966489

33 LED STREET (333 LEO STREET)

DAYTON, OH 45404 County: MONTGOMERY

Facility Type:

Status Undetermined No Determination

Classification: Status:

Has never been on the proposed final NPL

Latitude: Longitude: 3947300 08410000

Event Discovery:

State, Fund Financed

Environmental Audit, Inc.

MIKE SELLS (CONT'D)

Actual Completion Date: 04/20/88

Preliminary Assessment: State, Fund Financed

Actual Completion Date: 12/14/90

117. NORTH SAN LDFL INC

OHD980611875

200 E VALLEYCREST DR DAYTON, OH 45404 County: MONTGOMERY

Facility Type:

Not A Federal Facility Other

Ownership Indicator: Classification:

No Determination

Entry Source:

Notis

Status:

Has never been on the proposed final NPL

Latitude: 3947300 Longitude: 08410000

Event Discovery:

EPA, Fund Financed

Actual Completion Date: 06/01/81

Listing Site Inspection: State, Fund Financed Preliminary Assessment: EPA, Fund Financed

Actual Completion Date: 06/28/85

Screening Site Inspection: State, Fund Financed

* SENECA CHIEF INC

OHD980611826

403 HOWARD

FINLEY, OH 45404 County: MONTGOMERY

Facility Type:

Not A Federal Facility

Ownership Indicator:

Other

Classification:

No Determination

Entry Source:

Notis

Status:

Has never been on the proposed final NPL

Proposed NPL Update #:

00 3947300

Latitude: Longitude:

08410000

Event Discovery:

EPA, Fund Financed

Actual Camplatian Dat

Preliminary Assessment: State, Fund Financed

Actual Completion Date: 06/01/81

Dualining Assessed 4 Ct 4 E 4 E

Actual Completion Date: 09/25/85

Preliminary Assessment: State, Fund Financed

Actual Completion Date: 02/07/90

NFA. At the conclusion of a preliminary assessment, no further action is anticipated for this site or no hazard was identified.

* Facility does not appear to be within the area of interest.

16. IWD LIQUID WASTE

OHD004774345

3975 WAGONER FORD RD DAYTON, OH 45414 County: MONTGOMERY

Facility Type: Not A Federal Facility

Ownership Indicator: Other

Classification: No Determination

Entry Source: Notis

Status: Has never been on the proposed final NPL

Incident Type: Non-Oil Spill

Proposed NPL Update #: 00
Latitude: 3950480
Longitude: 08412420

Event Discovery: EPA, Fund Financed

Actual Completion Date: 04/01/79

Preliminary Assessment: State, Fund Financed

Actual Completion Date: 12/01/83

NFA. At the conclusion of a preliminary assessment, no further action

is anticipated for this site or no hazard was identified.

* KILGA ENTERPRISES

OHD980899942

5874 GERMANTOWN PIKE DAYTON, OH 45414 County: MONTGOMERY

Facility Type: Status Undetermined Classification: No Determination

Entry Source: EPA Files

Status: Has never been on the proposed final NPL

Latitude: 3950480 Longitude: 08412420

Event Discovery: Federal Enforcement

Actual Completion Date: 12/04/87

Preliminary Assessment: State, Fund Financed

Actual Completion Date: 11/07/90

* The street address provided appears to be outside the zip codes of interest.

158. MONTGOMERY CO N INCINERATOR

OHD081594293

6589 N WEBSTER ST DAYTON, OH 45414 County: MONTGOMERY

Facility Type: Not A Federal Facility

Ownership Indicator: Other

Classification: No Determination

Entry Source: HWDMS

Status: Has never been on the proposed final NPL

Latitude: 3950480 Longitude: 08412420

Event Discovery: EPA, Fund Financed

OHD071272512

FACILITY ADDRESS

MONTGOMERY CO N INCINERATOR (CONT'D)

Actual Completion Date: 08/01/80

Preliminary Assessment: State, Fund Financed

Actual Completion Date: 12/11/86

Screening Site Inspection: EPA, Fund Financed

Actual Completion Date: 06/30/87

25. SHERWIN WILLIAMS WAREHOUSE

3671 DAYTON PARK DRIVE DAYTON, OH 45414

County: MONTGOMERY

Facility Type: Classification:

Classification: Status:

Latitude: Longitude:

Event Discovery:

Status Undetermined No Determination

Has never been on the proposed final NPL

3950480 08412420

State, Fund Financed

Actual Completion Date: 04/20/88

8 Sites found for the area specified.

RCRA DATABASE

II. REGULATORY INFORMATION
4. US EPA RCRA DATABASE

DAYTON 1600 WEBSTER STREET DAYTON, OH 45404 County: MONTGOMERY

The EPA's Resource Conservation and Recovery Act (RCRA) Program identifies and tracks hazardous waste from the point of generation to the point of disposal. The RCRA Facilities database is a compilation by EPA of reporting facilities that generate, store, transport, treat or dispose of hazardous waste.

A search of the 1991 RCRA Database revealed the following facilities located within the stated zip code area(s): 45404. 45414

RCRA Sites

FACILITY ADDRESS

EPA ID#

104. ADVANCED ASSEMBLY AUTOMATION

OHD084755206

OHD004279774

314 LEO ST DAYTON, OH 45404

County:

MONTGOMERY

Closed non-TSD facility

90. AGA GAS INC 1223 MCCOOK AVE DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

143. AIR CITY MODELS AND TOOLS INC 80 COMMERCE PARK DR DAYTON, OH 45404 County: MONTGOMERY

OHD986972123

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

RCRA Sites

FACILITY ADDRESS

EPA ID#

77. AMCA INTERNATIONAL CORP
1752 STANLEY AVE
DAYTON, OH 45404
County: MONTGOMERY

OHD004243648

78. AMERICAN LUBRICANTS CO
1227 DEEDS AVE
DAYTON, OH 45404
County: MONTGOMERY

OHD004244547

100. ANGELL MANUFACTURING CO INC 1516-20 STANLEY AVE DAYTON, OH 45404 County: MONTGOMERY

OHD072873664

This facility generates at least

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

* APS MATERIALS INC
153 WALBROOK AVE
DAYTON, OH 45404
County: MONTGOMERY

OHD982066300

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

* The street address provided appears to be outside the zip codes of interest.

101. ARATEX SERVICES
1200 WEBSTER ST
DAYTON, OH 45404
County: MONTGOMERY

OHD072876279

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

72. BENDER AND LOUDON MOTOR FREIGHT INC 1795 STANLEY AVE BLDG 7 DAYTON, OH 45404 **MONTGOMERY** County:

OHD000772822

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

RCRA Permit Status: Protective/Precautionary Filer

A protective filer and precautionary filer who has been notified by EPA or the authorized state that its withdrawal has been approved.

77. BRAINERD MFG CO INDUSTRIES DIV 1723 WEBSTER 45404 DAYTON, OH **MONTGOMERY**

County:

OHD068953645

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

89. BRINKMAN TOOL AND DIE INC 325 KISER ST DAYTON, OH 45404 **MONTGOMERY** County:

OHD004279659

This facility generates less than 100 kg/mo of non-acutely hazardous waste.

132. CCC HIGHWAY INC 1464 KUNTZ ROAD DAYTON, OH 45404 County: **MONTGOMERY** OHT400011193

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

139. CHILDRENS MEDICAL CTR 1 CHILDRENS PLAZA DAYTON, OH 45404 OHD071289326

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

103. COASTAL TANK LINES INC 2160 JERGENS RD DAYTON, OH 45404 OHD083371591

County:

MONTGOMERY

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

128. COLUMBIA GAS TRANS AVONDALE WANETA AVE S OF HALDEMAN AVE DAYTON, OH 45404
County: MONTGOMERY

OHD986975712

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

150. CORDAGE PACKAGING
66 JANNEY RD
DAYTON, OH 45404
County: MONTGOMERY

OHD004479291

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

119. DAYTON CITY OF
520 KISER ST
DAYTON, OH 45404
County: MONTGOMERY

OHD981796964

43

DAYTON CITY OF (CONT'D)

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

134. DAYTON CLUTCH AND JOINT INC

OHD007862485

2005 TROY ST

DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

75. DAYTON ELECTRONIC PRODUCTS
117 E HELENA ST
DAYTON, OH 45404

OHD004241220

County:

MONTGOMERY

Non-handler (I.E. other than RCRA regulated waste handler)

133. DAYTON MACHINE TOOL CO 1314 WEBSTER ST DAYTON, OH 45404 OHD004277802

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

111. DAYTON PARTS CO NAPA

OHD103556080

221 LEO ST

DAYTON, OH 45404

County:

MONTGOMERY

This facility generates less than 100 kg/mo of non-acutely hazardous waste.

123. DAYTON PWR AND LIGHT N DAYTON SVC CTR 1317 TROY ST DAYTON, OH 45404 OHD982617003

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

88. DAYTON RUST PROOF COMPANY 1030 VALLEY ST DAYTON, OH 45404 OHD004278628

County:

MONTGOMERY

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

126. DAYTON TRANE
1441 STANLEY AVE
DAYTON, OH 45404
County: MONTGOMERY

OHD986967966

This facility generates less than 100 kg/mo of non-acutely hazardous waste.

151. DAYTON WATER SYSTEMS
1288 MCCOOK AVE
DAYTON, OH 45404
County: MONTGOMERY

OHD061614673

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

124. DAYTON WIRE CO
7 DAYTON WIRE PKWY
DAYTON, OH 45404
County: MONTGOMERY

OHD982619959

DAYTON WIRE CO (CONT'D)

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

105. DIAL MACHINE SERVICE CO INC

OHD093906055

131 KISER ST

DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

142. DIGITRON DAYTON

OHD982643793

500 WEBSTER ST

DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

138. DJINNII INDUSTRIES

OHD061709127

302 VERMONT AVE DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

76. DURIRON CO INC THE FOUNDRY & PUMP DIV 425 N FINDLAY ST DAYTON, OH 45404

OHD004241550

County:

MONTGOMERY

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

DURIRON CO INC THE FOUNDRY & PUMP DIV (CONT'D)

Existing Facility (In operation on or before 11/19/80)

This facility is engaged in the treatment, storage, and/or the disposal of hazardous waste.

TSD Facility Type: Land Disposal

A facility with land disposal units that are in operation, in post-closure care, closing prior to the certification, or new prior to permitting.

RCRA Permit Status: Permit Withdrawal Candidate

A facility which will not seek an operating permit for any units, This facility was previously covered by RCRA (or was thought to be covered by RCRA) and is now awaiting a decision on a status change request which may have been initiated by either the facility or the regulating authority.

80. ELECTRO-POLISH CO INC
332 VERMONT AVE
DAYTON, OH 45404
County: MONTGOMERY

OHD004264198

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

140. ENTEC CORP
239 E HELENA ST
DAYTON, OH 45404
County: MONTGOMERY

OHD161890967

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

65. ENVIRONMENTAL PROCESSING SERVICES
416 LEO STREET
DAYTON, OH 45404
County: MONTGOMERY

OHD000608588

ENVIRONMENTAL PROCESSING SERVICES (CONT'D)

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

Existing Facility (In operation on or before 11/19/80)

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

This facility is engaged in the treatment, storage, and/or the disposal of hazardous waste.

TSD Facility Type: Storage/Treatment

A facility with storage and treatment units that are new operating or closing but not yet certified. The facility does not currently have incinerator units and does not have and did not have in the past any land disposal units.

RCRA Permit Status: Operating Facility/ Permit Candidate

An operating (not closed) treatment, storage, or disposal facility not belonging in other categories. Authority to operate may be statutory interim status or may have been granted through an interim status compliance letter or compliance order, (ISCL or ISCO) or other enforcement action. Facility may also have some units that are closed or permitted.

83. ESTEE MOLD AND DIE INC 1467 STANLEY AVE DAYTON, OH 45404 County: MONTGOMERY OHD004277679

This facility generates less than 100 kg/mo of non-acutely hazardous waste.

84. GAYSTON CORPORATION
55 JANNEY ROAD
DAYTON, OH 45404
County: MONTGOMERY

OHD004278156

Closed non-TSD facility

91. GEM CITY CHEMICALS INC 1287 AIR CITY AVE DAYTON, OH 45404 OHD004472940

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

107. GEM CITY SPECIAL MACHINE BLDER

OHD095201513

1425 N KEOWEE ST DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

109. GEM CITY STAMPINGS INC 1546 STANLEY AVE DAYTON, OH 45404 OHD097922520

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

130. GLOBE MOTORS DIV OF LCS INC 2275 STANLEY AVE DAYTON, OH 45404 OHD986979144

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

129. GLOBE MOTORS DIV OF LCS INC 1944 TROY ST DAYTON, OH 45404 County: MONTGOMERY

OHD986979136

Environmental Audit, Inc.

GLOBE MOTORS DIV OF LCS INC (CONT'D)

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

73. GMC DELCO PRODUCTS DIV DAYTON PLANT 1619 KUNTZ ROAD

OHD000817585

DAYTON, OH 45404

County:

MONTGOMERY

SIC Code: 3621 3714

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

Closed Facility (Previously had interim status or an EPA Permit, but no longer has either.)

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

RCRA Permit Status: Closure Certified

A facility which has completed closure through 40 CFR 264 or 40 CFR 265 for all units, and such closure has been certified by the owner and by a professional engineer.

This category also includes storage facilities where EPA or the authorized state has confirmed the reversion to storage for less than ninety days per 40 CFR 262. The regulating agency has not taken deliberate action to terminate the facility's interim status as a result of LOIS non-certification.

HOHMAN PLATING & MFG CO 814 HILLROSE AVE

DAYTON, OH 45404 County:

MONTGOMERY

SIC Code:

3471

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

Existing Facility (In operation on or before 11/19/80)

OHD004278362

HOHMAN PLATING & MFG CO (CONT'D)

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

RCRA Permit Status: Protective/Precautionary Filer

A protective filer and precautionary filer who has been notified by EPA or the authorized state that its withdrawal has been approved.

86. HOLLANDER INDUSTRIES CORP 219 KELLY AVE DAYTON, OH 45404 OHD004278438

OHD099020133

County:

MONTGOMERY

Non-handler (I.E. other than RCRA regulated waste handler)

110. JOHN PAUL ENTERPRISES INC 400 DETRICKS ST

DAYTON, OH 45404

County:

MONTGOMERY

SIC Code:

3321

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

Closed Facility (Previously had interim status or an EPA Permit, but no longer has either.)

RCRA Permit Status: Closure Certified

A facility which has completed closure through 40 CFR 264 or 40 CFR 265 for all units, and such closure has been certified by the owner and by a professional engineer.

This category also includes storage facilities where EPA or the authorized state has confirmed the reversion to storage for less than ninety days per 40 CFR 262. The regulating agency has not taken deliberate action to terminate the facility's interim status as a result of LOIS non-certification.

82. KIMES ROBERT H INC 2030 WEBSTER ST DAYTON, OH 45404 OHD004277240

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

94. LABINAL COMPONENTS GLOBE MOTORS DIV 1784 STANLEY AVE OHD041066325

DAYTON, OH 45404 County:

MONTGOMERY

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

99. LESTON CORPORATION
2017 VALLEY STREET
DAYTON, OH 45404

OHD072864390

County: MONTGOMERY

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

87. NEFF FOLDING BOX CO
2001 KUNTZ RD
DAYTON, OH 45404
County: MONTGOMERY

OHD004278446

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

137. NILO CO
115 VALLEYCREST DR
DAYTON, OH 45404
County: MONTGOMERY

OHD054439781

NILO CO (CONT'D)

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

70. OHIO BELL-SUPPLY WAREHOUSE

OHD000720417

2024 VALLEY STREET DAYTON, OH 45404

County:

MONTGOMERY

Non-handler (I.E. other than RCRA regulated waste handler)

152. OHIO DEPT OF TRANSP

OHD982205445

4397 PAYNE AVE DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

ORBIT MOVERS 1101 NEGGLEY PLACE AVE DAYTON, OH 45404

OHD982606220

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

* The street address provided appears to be outside the zip codes of interest.

81. PAINT AMERICA CO

OHD004275772

1501 WEBSTER ST DAYTON, OH 45404

County:

MONTGOMERY

Non-handler (I.E. other than RCRA regulated waste handler)

93. PAULS GARAGE INC 2941 VALLEY ST DAYTON, OH 45404 OHD041060385

County:

MONTGOMERY

This facility generates less than 100 kg/mo of non-acutely hazardous waste.

122. PENSKE TRUCK LEASING CO LP 1601 STANLEY AVE OHD982611592

DAYTON, OH 45404 County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

112. PENSKE TRUCK LEASING CO LP
1922 LINDORPH DR
DAYTON, OH 45404
County: MONTGOMERY

OHD107623761

Closed non-TSD facility

113. PEPSI COLA OF DAYTON
526 MILBURN AVE
DAYTON, OH 45404
County: MONTGOMERY

OHD123387748

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

127. PRECISION METAL FABRICATION
191 HEID AVE
DAYTON, OH 45404
County: MONTGOMERY

OHD986968865

PRECISION METAL FABRICATION (CONT'D)

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

153. PRICE BROTHERS

OHD099019259

1950 WEBSTER ST DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

154. PRICE BROTHERS CO R AND D LAB

OHD986985315

1932 E MONUMENT AVE DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

155. REICHARD BUICK 519 N FINDLAY ST OHD986985752

DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at le st 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

98. ROBERTS CONSOLIDATED INDUSTRIES

OHD071288039

220 JANNEY RD

DAYTON, OH 45404

County:

MONTGOMERY

SIC Code:

2891

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

ROBERTS CONSOLIDATED INDUSTRIES (CONT'D)

Existing Facility (In operation on or before 11/19/80)

RCRA Permit Status: Protective/Precautionary Filer

A protective filer and precautionary filer who has been notified by EPA or the authorized state that its withdrawal has been approved.

71. SCOTT EDWIN D BROKER 1820 VALLEY STREET DAYTON, OH 45404

OHD000721027

County:

MONTGOMERY

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

RCRA Permit Status: Protective/Precautionary Filer

A protective filer and precautionary filer who has been notified by EPA or the authorized state that its withdrawal has been approved.

136. SHEFFIELD MACHINE TOOL CO 1506 MILBURN AVE DAYTON, OH 45404 County: MONTGOMERY OHD012183539

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

66. SHELL OIL CO DAYTON PLANT 801 BRANDT PIKE DAYTON, OH 45404 County: MONTGOMERY

OHD000609156

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

OHD095194684

106. SOHIO DAYTON TERMINAL 620 621 BRANDT PIKE DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

108. SPECIALTY SHEET METAL INC

OHD097918395

821 HALL AVE

DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

74. SUNMARK PETROLEUM MARKETING TERMINAL

OHD001722263

1708 FARR DR

DAYTON, OH 45404

County:

MONTGOMERY

Non-handler (I.E. other than RCRA regulated waste handler)

74. SUNMARK PETROLEUM MARKETING TERMINAL

OHD000685156

1708 FARR DR

DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

67. SUNOCO SERVICE STATION

OHD000671818

1448 TROY ST

DAYTON, OH 45404

County:

MONTGOMERY

Non-handler (I.E. other than RCRA regulated waste handler)

68. SUNOCO SERVICE STATION

OHD000682823

201 VALLEY ST

DAYTON, OH 45404

County:

MONTGOMERY

Non-handler (I.E. other than RCRA regulated waste handler)

69. SUNOCO SERVICE STATION

OHD000682963

7186 MILLER LANE DAYTON, OH 45404

County:

MONTGOMERY

Non-handler (I.E. other than RCRA regulated waste handler)

120. TAIT INC

OHD981955776

500 WEBSTER ST DAYTON, OH 45404

County:

MONTGOMERY

Non-handler (I.E. other than RCRA regulated waste handler)

156. UNITED PARCEL SERVICE

OHD981537681

1308 BRANDT PIKE DAYTON, OH 45404

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

131. UNO VEN COMPANY DAYTON TERMINAL

OHT400010740

1796 FARR DRIVE

DAYTON, OH 45404 County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

79. W & W MOLDED PLASTICS INC 1441 MILBURN AVENUE DAYTON, OH 45404

OHD004245098

County: MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

RCRA Permit Status: Protective/Precautionary Filer

A protective filer and precautionary filer who has been notified by EPA or the authorized state that its withdrawal has been approved.

144. WATKINS MOTOR LINES INC 1799 STANLEY AVE DAYTON, OH 45404 County: MONTGOMERY OHD986979979

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

135. WISE GARAGE INC 1845 TROY ST DAYTON, OH 45404 County: MONTGOMERY

OHD007868748

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

36. AGA GAS INC
3800 DAYTON PARK DR
DAYTON, OH 45414
County: MONTGOMERY

OHD123277741

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

62. ALAN LAF INC 4530 WADSWORTH AVE DAYTON, OH 45414 OHD986975035

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

35. AMERICAN BODY SHOP 2507ASHCRAFT RD DAYTON, OH 45414 OHD121994834

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

14. AMERICAN CARCO CORP 2800 ONTARIO AVE DAYTON, OH 45414 County: MONTGOMERY OHD004277687

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

30. AMERICAN HONDA MOTOR CO INC PC 6400 SAND LAKE RD DAYTON, OH 45414 County: MONTGOMERY

OHD083365411

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

42. AMERICAN HONDA MOTOR CO INC REDISTR CTR
3920 SPACE DR
DAYTON, OH 45414
County: MONTGOMERY

OHD981794902

124. B-N PLATING

OHD004243457

613 DANIEL ST DAYTON, OH 45414

County:

MONTGOMERY

This facility generates less than 100 kg/mo of non-acutely hazardous waste.

60. BROADWAY COMPANIES

OHD981797673

6344 WEBSTER ST DAYTON, OH 45414

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

58. BROWNING BODY AND FRAME

OHD170253868

9001 DIXIE DR

DAYTON, OH 45414

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

22. CARGILL INC 3201 NEEDMORE RD OHD061698676

DAYTON, OH 45414

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

3. CHEMINEER INC 5870 POE AVE DAYTON, OH 45414

OHD004262465

County:

MONTGOMERY

CHEMINEER INC (CONT'D)

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

45. COLUMBIA GAS TRANS NORTH DIXIE

OHD986975753

N DIXIE RD

DAYTON, OH 45414

County:

MONTGOMERY

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

50. CROSSROADS TOOL AND MFG CO 2787 ARMSTRONG LN DAYTON, OH 45414 OHD004482071

County: MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

40. DARLENES ONE HOUR DRY CLEANERS
5901 N DIXIE DR
DAYTON, OH 45414
County: MONTGOMERY

OHD981198930

This facility generates less than 100 kg/mo of non-acutely hazardous waste.

56. DAYTON DIESEL INJECTION
3341 N DIXIE DR
DAYTON, OH 45414
County: MONTGOMERY

OHD125494112

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

46. DURIRON CO INC MODERN IND PLASTICS DIV 3337 N DIXIE DR DAYTON, OH 45414 OHD004241436

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

33. EASTERN TANK LINES INC 5536 BRENTLINGER DR DAYTON, OH 45414 OHD093901890

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

53. ELDRIDGE BODY SHOP INC 4625 N DIXIE DR DAYTON, OH 45414 County: MONTGOMERY OHD079445094

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

55. ENCON INC
6161 VENTNOR AVE
DAYTON, OH 45414
County: MONTGOMERY

OHD122526023

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

17. ERNST ENTERPRISES VALLEY CONCRETE INC 4970 WAGONER FORD RD DAYTON, OH 45414 County: MONTGOMERY

OHD044505915

FACILITY ADDRESS

ERNST ENTERPRISES VALLEY CONCRETE INC (CONT'D)

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

63. EXECUTIVE MOLD CORP 2781 THUNDERHAWK CT DAYTON, OH 45414 OHD986982841

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

61. FINDLEY ADHESIVES INC
4710 WADSWORTH RD
DAYTON, OH 45414
County: MONTGOMERY

0HD982206484

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

145. FLUTRONICS INC DYNAMIC TECH
5661 WEBSTER ST
DAYTON, OH 45414
County: MONTGOMERY

OHD023929227

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

52. GARNER BROS INC
3361 NEEDMORE RD
DAYTON, OH 45414
County: MONTGOMERY

OHD056602329

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

64

18. GMC DELCO MORAINE DIV DAYTON NORTH 3100 NEEDMORE ROAD

OHD045557766

DAYTON, OH 45414

County: MONTGOMERY

SIC Code:

3714

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

Existing Facility (In operation on or before 11/19/80)

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

This facility is engaged in the treatment, storage, and/or the disposal of hazardous waste.

TSD Facility Type: Storage/Treatment

A facility with storage and treatment units that are new operating or closing but not yet certified. The facility does not currently have incinerator units and does not have and did not have in the past any land disposal units.

RCRA Permit Status: Operating Facility/ Permit Candidate

An operating (not closed) treatment, storage, or disposal facility not belonging in other categories. Authority to operate may be statutory interim status or may have been granted through an interim status compliance letter or compliance order, (ISCL or ISCO) or other enforcement action. Facility may also have some units that are closed or permitted.

1. HARRIS GRAPHICS CORP BUS FORMS SYSTEMS
4900 WEBSTER ST
DAYTON, OH 45414
County: MONTGOMERY

OHD004202917

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

6. INDUSTRIAL ELECTRIC MOTORS INC 5131 WEBSTER ST DAYTON, OH 45414 County: MONTGOMERY

FACILITY ADDRESS

16. INDUSTRIAL WASTE DISPOSAL CO 3975 WAGONER FORD RD DAYTON, OH 45414 County: MONTGOMERY OHD004774345

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

20. INTEGRITY MFG CORP 3723 INPARK CIRCLE DAYTON, OH 45414 OHD056487374

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

146. JORGENSON EARLE M CO 2531 NEEDMORE RD DAYTON, OH 45414 OHD986974988

County: MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

59. LORD CORP
4644 WADSWORTH RD
DAYTON, OH 45414
County: MONTGOMERY

OHD981793698

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

34. LYTTON INC
3970 IMAGE DR
DAYTON, OH 45414
County: MONTGOMERY

EPA ID#

LYTTON INC (CONT'D)

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

27. MAACO

OHD074704404

3474 NEEDMORE

DAYTON, OH 45414 County:

MONTGOMERY

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

28. MANFREDI MOTOR TRANSIT COMPANY 5560 BRENTLINGER DR DAYTON, OH 45414 County: MONTGOMERY OHD077758936

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

This facility is engaged in the off-site transportation of hazardous waste by air, rail, road (highway), and/or water.

49. MAZER CORP
2501 NEFF RD
DAYTON, OH 45414
County: MONTGOMERY

OHD004473708

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

23. MCNULTY MOTORS INC
7030 POE AVE
DAYTON, OH 45414
County: MONTGOMERY

MCNULTY MOTORS INC (CONT'D)

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

10. MEAD IMAGE CENTER

OHD000809947

3908 IMAGE DRIVE DAYTON, OH 45414

County:

MONTGOMERY

Non-handler (I.E. other than RCRA regulated waste handler)

37. METOKOTE CORP PLT 6
3435 STOP EIGHT RD
DAYTON, OH 45414

County:

MONTGOMERY

21. MIAMI VALLEY INTERNATIONAL TRK 7655 POE AVE OHD056541055

OHD139252266

OHD150672509

DAYTON, OH

45414

County:

MONTGOMERY

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

57. MICAFIL INC 2608 AND 2609 NORDIC RD

DAYTON, OH 45414

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

26. MILES INC
5600 BRENTLINGER DR
DAYTON, OH 45414
County: MONTGOMERY

MILES INC (CONT'D)

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

47. MILLAT INDUSTRIES CORP 4534 WADSWORTH RD DAYTON, OH 45414

OHD004242657

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

29. MONTGOMERY CNTY INCINERATOR NORTH PLT 6589 N WEBSTER ST DAYTON, OH 45414 **MONTGOMERY**

OHD081594293

County:

Non-handler (I.E. other than RCRA regulated waste handler)

RCRA Permit Status: Protective/Precautionary Filer

A protective filer and precautionary filer who has been notified by EPA or the authorized state that its withdrawal has been approved.

7. MUSICKS BODY SHOP INC 3055 STOP EIGHT RD DAYTON, OH 45414 County: **MONTGOMERY** OHD041598046

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

31. NEEDMORE SERVICE CENTER 2206 NEEDMORE RD DAYTON, OH 45414 County: **MONTGOMERY**

NEEDMORE SERVICE CENTER (CONT'D)

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

64. NORTHRIDGE BODY SHOP AND DETAIL

OHD986984276

5910 MILO RD DAYTON, OH 45414

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

51. OLD COLONY ENVELOPE CO
5621 N WEBSTER ST
DAYTON, OH 45414
County: MONTGOMERY

OHD041229964

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

54. OMEGA AUTOMATION INC 2850 NEEDMORE RD DAYTON, OH 45414 County: MONTGOMERY

OHD108564949

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

13. OMEGA TOOL AND DIE
6192 NORTH WEBSTER ST
DAYTON, OH 45414
County: MONTGOMERY

OHD004277398

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

EPA ID#

19. PERFECT-A-TEC CORP

OH0054433818

6222 WEBSTER ST DAYTON, OH 45414

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

147. PROJECTS UNLIMITED

OHD004277869

3680 WYSE RD

DAYTON, OH 45414

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

5. PROTECTIVE TREATMENTS INC 3345 STOP EIGHT ROAD DAYTON, OH 45414

OHD004279204

County:

MONTGOMERY

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

11. RIECK MECHANICAL SERVICES INC 5245 WADSWORTH RD DAYTON, OH 45414 **MONTGOMERY** County:

OHD003861168

This facility generates at least 1000 kg/mo of non-acutely hazardous waste or 1 kg/mo of acutely hazardous waste.

4. S & G PLATERS INC 2640 KEENAN AVE DAYTON, OH 45414 County: MONTGOMERY

S & G PLATERS INC (CONT'D)

Non-handler (I.E. other than RCRA regulated waste handler)

39. SHELL SERVICE STATION

OHD980702336

2450 NEEDMORE

DAYTON, OH 45414

County:

MONTGOMERY

Non-handler (I.E. other than RCRA regulated waste handler)

9. SUNOCO SERVICE STATION 2001 NEEDMORE RD DAYTON, OH 45414 ОНО000671719

County:

MONTGOMERY

Non-handler (I.E. other than RCRA regulated waste handler)

2. TECH DEVELOPMENT INC
6800 POE AVE
DAYTON, OH 45414
County: MONTGOMERY

OHD004244851

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

148. TONEY TOOL MFG INC
5724 WEBSTER ST
DAYTON, OH 45414
County: MONTGOMERY

OHD986986172

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

43. VENTURE MFG

OHD982625261

OHD986967925

3949 DAYTON PARK DR DAYTON, OH 45414

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

44. VENTURE MFG CO 3616 DAYTON PARK DR

DAYTON, OH 45414

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

48. WALL COLMONOY 5251 WEBSTER ST OHD004243689

DAYTON, OH 45414

County:

MONTGOMERY

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

149. WHITEFORD TRANSPORT SYSTEMS

OHD982606840

2942 BOULDER AVE DAYTON, OH 45414

County:

MONTGOMERY

Closed non-TSD facility

15. YODER INDUSTRIES 2520 NEEDMORE RD DAYTON, OH 45414

County:

MONTGOMERY

YODER INDUSTRIES (CONT'D)

This facility generates at least 100 kg/mo, but less than 1000 kg/mo of non-acutely hazardous waste.

141 Sites found for the area specified.

II. REGULATORY INFORMATION
5. US EPA OPEN DUMP SITES
DAYTON
1600 WEBSTER STREET
DAYTON, OH 45404
County: MONTGOMERY

A search of the 1989 OPEN DUMP inventory of facilities that do not comply with the Environmental Protection Agency's Criteria for Classification of Solid Waste Disposal Facilities and Practices; revealed the following facilities located within the below listed city. An additional search conducted revealed the following facilities located within the below listed county for which no city location information was available: DAYTON OH

OPEN DUMP Sites

FACILITY ADDRESS

ID#

LANDFILL SYSTEMS INC
.8M W ON POWELL RD FROM RT 202
DAYTON, OH
County: MONTGOMERY

Non-Compliance : Gases

- 1 Sites found for the area specified.
- O Possibly Misidentified Sites found for the area specified.

II. REGULATORY INFORMATION 6. ERNS DATABASE

DAYTON 1600 WEBSTER STREET DAYTON, OH 45404 County: MONTGOMERY

The Emergency Response Notification System (ERNS) is a national database used to collect information on reported releases of oil and hazardous substances. The database contains information from spill reports made to federal authorities including the EPA, the US Coast Guard, the National Response Center and the Department of Transportation.

A search of the Database records for the period of 1987 - 1991 revealed the following information regarding reported spills of oil or hazardous substances in the stated zip code area(s). Only records with spill incident location zip codes or fixed facility discharger zip codes for that city are included. Also included are sites with incomplete zip code information that are listed as being located within the search city. There are additional records in the database with inadequate location information that are not included in this report.

Zipcode: 45404

ERNS Sites FACILITY ADDRESS SPILL DATE Case Number: 08029 06/17/1988 160. Spill Location: 1600 WEBSTER ST Spill Time : 10:15 A.M. : National Response Center Source/Agency Discharger Name : ORF, DOUG Discharger Org. : CHRYSLER CORP/ACUSTAR DAYTON* Discharger Add. : 1600 WEBSTER ST DAYTON, OH 45404 Discharger Phone : 513-224-2467 Material Spilled: 100.00 GAL CUTTING OIL Source of Spill : Fixed Medium Affected : Water Fixed Facility Waterway Affected: GREAT MIAMI RIVER : Less than \$50,000 in Property Damage Damages Notification : State/Local Authority

Case Number: 12055

08/31/1988

160. Spill Location: 1600 WEBSTER ST

Spill Time : 5:30 A.M.

Environmental Audit, Inc.

ORF, DOUG (CONT'D)

Source/Agency National Response Center

Discharger Name ORF, DOUG

Discharger Org. ACUSTAR DAYTON THERMAL PRODUCTS

Discharger Add. 1600 WEBSTER ST

DAYTON, OH 45404

Discharger Phone : 513-224-2467

Material Spilled : 40.00 GAL LUBE OIL Source of Spill Fixed Facility

Medium Affected Land

STORM DRAIN, GREAT MIAMI RIVER Waterway Affected:

Damages Less than \$50,000 in Property Damage

Notification State/Local Authority

Case Number: 15224

11/09/1988

160. Spill Location: 1600 WEBSTER ST

> Spill Time : 6:05 A.M.

Source/Agency : National Response Center

Discharger Name : ORF, DOUG

Discharger Org. : CHRYSLER CROP ASTROSTAR

Discharger Add. : 1600 WEBSTER ST

DAYTON, OH 45404

Discharger Phone: 513-224-2467

Material Spilled : 35.00 GAL HYDRAULIC OIL

Source of Spill : Fixed Facility

Medium Affected : Water

Waterway Affected: STROM DRAIN/GREAT MIAMI RIVER

Damages Less than \$50,000 in Property Damage

Notification State/Local Authority

Case Number: 15560 160. Spill Location:

1600 WEBSTER STREET

Spill Time 1.00:20 P.M.

Source/Agency : National Response Center

Discharger Name : ORF, DOUGLAS

Discharger Org. : ACUSTAR DAYTON THERMAL PRODUCTS

Discharger Add. : 1600 WEBSTER STREET DAYTON, OH 45404

Discharger Phone 513-224-2467

Material Spilled : 500.00 GAL PAINT SLUDGE, W/CHROMIUM

Source of Spill : Highway Medium Affected : Water

Waterway Affected: CONCRETE DRIVEWAY & INTO STORM SEWER

11/16/1988

ORF, DOUGLAS (CONT'D)

Damages

: Less than \$50,000 in Property Damage

Notification

: State/Local Authority

Case Number: 13181

09/24/1988

10/13/1988

Discharger Location:

PO BOX 175

Spill Time : 3:00 P.M.
Source/Agency : National Response Center

Discharger Name : BIRK, THOMAS Discharger Org. : ECOLOTEC

Discharger Add. : PO BOX 175

: DAYTON, OH 45404

Discharger Phone: 513-254-9990

Material Spilled : 0.00 UNK FLAMMABLE LIQ PAINT MATERIAL

: 0.00 UNK ANTI-FREEZE

0.00 UNK WASTE CEMENT ADHESIVE

Source of Spill : Fixed Facility

Medium Affected : Air

Waterway Affected: AIR RELEASE

Damages

: Less than \$50,000 in Property Damage

Notification : State/Local Authority

* Not able to locate facility using available information.

Case Number: 14385

Discharger Location:

POB 81

Source/Agency : National Response Center

Discharger Name : DUPIUS, PHILLIP

Discharger Org. : ENROSREV MIDWEST

Discharger Add. : POB 81

DAYTON, OH 45404

Discharger Phone: 513-254-2346

Material Spilled :

0.00 UNK TRANSFORMER OIL

Source of Spill : Fixed Facility

Medium Affected : Land

Waterway Affected: GROUND

Damages

: Less than \$50,000 in Property Damage

Notification : State/Local Authority

- * Not able to locate facility using available information.
- 6 ERNS sites found for the area specified.

MISIDENTIFIED RECORDS SEARCH

The following sites, located in the search city, have inadequate or incomplete zip code information in the database records and may be located near the subject property:

ERNS Misidentified Sites

FACILITY ADDRESS SPILL DATE Case Number: 17878 10/10/1989 Spill Location: 5263 BURKHART RD DAYTON OH County: MONTGOMERY Spill Time : 10:00 A.M. Source/Agency National Response Center Discharger Org. NIK'S PAINTING Discharger Add. 5263 BURKHART RD DAYTON, OH Discharger Phone 0 Material Spilled: 0.00 UNK PAINT THINNER 0.00 UNK KEROSENE Source of Spill Fixed Facility Medium Affected : Water Waterway Affected: WELL WATER Damages Less than \$50,000 in Property Damage * Not able to locate facility using available information.

Case Number: 20711

* Spill Location: SPRINGFIELD ST.

DAYTON OH

County: MONTGOMERY

Spill Time : 12:00 P.M.

Source/Agency : National Response Center

Source/Agency : National I Discharger Org. : ECOLOTECH

Discharger Add. : SPRINGFIELD ST.

DAYTON, OH

Discharger Phone :

Material Spilled : 0.00 UNK HAZARDOUS CHEMICALS

Source of Spill : Fixed Facility

Medium Affected : Water

Waterway Affected: LAND AND NEARBY RIVER

Damages : Less than \$50,000 in Property Damage

* Facility does not appear to be within the area of interest.

09/01/1989

2 ERNS misidentified sites found for the area specified.

MISIDENTIFIED SITES

III. MISIDENTIFIED SITES

DAYTON 1600 WEBSTER STREET DAYTON, OH 45404 County: MONTGOMERY

Aside from the databases searched in section II of this Report, EPA records also contain sites and facilities which cannot be located in those databases because they are misidentified in the EPA records or lack sufficient information to identify the sites correctly. EAI Environmental Data Systems is designed to search these miscellaneous records for misidentified or incorrectly catalogued sites and facilities in the area specified.

Although this search may identify additional sites or facilities on or near the subject property, there is no guarantee that all such sites contained in the miscellaneous records have been identified.

The EAI systems search of the EPA miscellaneous records identified the following sites or facilities which appear to be located on or near the subject property.

Misidentified - FINDS Sites

FACILITY ADDRESS

EPA ID#

OHD980899942

* KILGO ENTERPRISES 5874 GERMANTON PIKE DAYTON, OH 99999

Region: 05

EPA Responsible Office(s):

Pesticides and TSCA Enforcement System, Office of Pesticides and

Toxic Substances

Program ID # : OHD980899942 Superfund - Hazardous Waste-Superfund Program ID # : OHD980899942

1 Total Misidentified sites found for the area specified

* Facility does not appear to be within the area of interest.

Environmental Audit, Inc.

THE STATE REPORT

REPORT PROPERTY ADDRESS:

DAYTON 1600 WEBSTER STREET DAYTON, OHIO 45404 County: MONTGOMERY

TABLE OF CONTENTS

- I. STATE DATABASE INFORMATION
 - 1. State Priority List

I. STATE DATABASE INFORMATION
DAYTON
1600 WEBSTER STREET
DAYTON, OHIO 45404
County: MONTGOMERY
1. State Priority List

The Ohio Environmental Protection Agency, Corrective Actions Section compiles a master list of identified sites or sources of environmental problems. A review of the Unregulated Sites Master List revealed the following facilities located within the 45404 and 45414 zip code areas, Montgomery County, Ohio.

	EPA ID # OHIO EPA ID #	FACILITY NAME/LOCATION
65.	OHD000608588 557-1081	Environmental Processing Services 416 Leo St. Dayton, OH 45404 Montgomery County
159.	OHD986966489 557-1002	Mike Sells 333 Leo Street Dayton, OH 45404 Montgomery County
29.	OHD081594293 557-0540	Montgomery Co Incinerator - North Plt. 6589 Webster St Dayton, OH 45414 Montgomery County
117.	OHD980611875 557-0583	North San Ldfl Inc 200 E Valleycrest Dr Dayton, OH 45404 Montgomery County
25.	OHD071272512 557-1000	Sherwin Williams Warehouse 3671 Dayton Park Dr Dayton, OH 45414 Montgomery County

I. STATE DATABASE INFORMATION
DAYTON
1600 WEBSTER STREET
DAYTON, OHIO 45404
County: MONTGOMERY
1. State Priority List

EPA ID #
OHIO EPA ID #

FACILITY NAME/LOCATION

16. OHD004774345 557-0423 IWO Liquid Waste, Inc. 3975 Wagoner Ford Rd. Dayton, OH 45414 Montgomery County

* 0HD98089942 557-0977 Kilga Enterprises 5874 Germantown Pike Dayton, OH 45414 Montgomery County

- * Facility does not appear to be within the area of interest.
 - 7 Sites found for the area specified.
 - O Possibly Misidentified Sites found for the area specified.

SDMS US EPA Region V

Imagery Insert Form

Some images in this document may be illegible or unavailable in SDMS. Please see reason(s) indicated below:

	ce documents. Image(s) in SDMS is equivalent to hard copy. Specify Type of Document(s) / Comments:
Unless otherwise noted,	r RESOLUTION variations. these pages are available in monochrome. The source document pageages. The original document is available for viewing at the Superfur Specify Type of Document(s) / Comments:
	highly sensitive information. Due to confidentiality, materials with lable in SDMS. You may contact the EPA Superfund Records Mana
Unscannable Material: Oversized or Due to certain scanning SDMS	Format. equipment capability limitations, the document page(s) is not availa Specify Type of Document(s) / Comments:
OVERSIZED MAP: CAHOKIA & FRENC	USGS TOPOGRAPHIC MAPS OF GRANITE CITY, MONKS MO CH VILLAGE
:	

W. L. GORE & ASSOCIATES, INC.

100 CHESAPEAKE BLVD., P.O. BOX 10 • ELKTON, MARYLAND 21922-0010 • PHONE: 410/392-7600

FAX: 410/506-4780

GORE-SORBER* EXPLORATION SURVEY GORE-SORBER* SCREENING SURVEY

1 of 6

GORE-SORBER® Screening Survey **Final Report**

DaimlerChrysler Dayton, OH

January 5, 1999

Gore Production Order No. 098063

Prepared For: Leggette, Brashears & Graham 1210 West County Road East, Suite 700 St. Paul, MN 55112

W.L. Gore & Associates, Inc.

Written/Submitted by:

Ray Fenstermacher, P.G., Project Manager

Reviewed/Approved by:

Mark J. Wrigley, P.G. Project Manager

Analytical Data Reviewed by:

Kelly Renee Scott, Chemist

1 \MAPPING\PROJECTS\098063\990105R DOC

This document shall not be reproduced, except in full, without written approval of W.L. Gore & Associates

GORE-SORBER® Screening Survey Final Report

REPORT DATE: January 5, 1999 AUTHOR: RFF

SITE INFORMATION

Site Reference: DaimlerChrysler, Dayton, OH

Customer Purchase Order Number: 3CHRY4 DAYTON

Gore Production Order Number: 098063 Gore Site Code: ATX

FIELD PROCEDURES

Modules shipped: 105

Installation Date(s): 10/13/98 # Modules Installed: 95

Field work performed by: Leggette. Brashears & Graham

Retrieval date(s): 10/27/98 Exposure Time: 14 [days]
Modules Retrieved: 93 # Trip Blanks Returned: 4 *
Modules Lost in Field: 2 # Unused Modules Returned: 6

Date/Time Received by Gore: 10/28/98 @ 12:00 PM By: TC

Recorded Cooler/Water Temperature Control Blank temperature: 3.8 and 2.3 [°C]

Chain of Custody Form attached: $\sqrt{}$ Chain of Custody discrepancies: None

Comments: No trip blank samples were designated on the chain of custody. As such, four unused modules returned from the field were selected and analyzed as trip blanks. Module 169986 contained no sorbers due to field damage.

GORE-SORBER® Screening Survey Final Report

ANALYTICAL PROCEDURES

W.L. Gore & Associates' Screening Module Laboratory operates under the guidelines of its Quality Assurance Manual, Operating Procedures and Methods. The quality assurance program is consistent with Good Laboratory Practices (GLP) and ISO Guide 25, "General Requirements for the Competence of Calibration and Testing Laboratories", third edition, 1990. The Laboratory is audited regularly by a quality system design, development and auditing company.

Instrumentation consists of state of the art gas chromatographs equipped with mass selective detectors, coupled with automated thermal desorption units. Sample preparation simply involves cutting the tip off the bottom of the sample module and transferring one or more exposed sorbent containers (sorbers, each containing 40mg of a suitable granular adsorbent) to a thermal desorption tube for analysis. Sorbers remain clean and protected from dirt, soil, and ground water by the insertion/retrieval cord, and require no further sample preparation. Samples remain frozen until analysis and unanalyzed sorbers are archived in the freezer for potential future analysis.

Analytical Method Quality Assurance:

The analytical method employed is a modified EPA method 8260A/8270B. Before each run sequence, two instrument blanks, a sorber containing 5µg BFB (Bromofluorobenzene), and a method blank are analyzed. The BFB mass spectra must meet the criteria set forth in the method before samples can be analyzed. A method blank and a sorber containing BFB is also analyzed after every 30 samples and/or trip blanks. Standards containing the selected target compounds at three calibration levels of 5, 20, and 50µg are analyzed at the beginning of each run. The criterion for each target compound is less than 35% RSD (relative standard deviation). If this criterion is not met for any target compound, the analyst has the option of generating second- or third-order standard curves, as appropriate. A second-source reference standard, at a level of 10µg per target compound, is analyzed after every ten samples and/or trip blanks, and at the end of the run sequence. Positive identification of target compounds is determined by 1) the presence of the target ion and at least two secondary ions; 2) retention time versus reference standard; and, 3) the analyst's judgment.

NOTE: All data have been archived. Any replicate sorbers not used in the initial analysis will be discarded fifteen (15) days from the date of analysis.

Laboratory analysis: thermal desorption, gas chromatography, mass selective detection

Quality Assurance Level: 2 (ANA-4/VCA1)

Instrument ID: #3 Chemist: KRS Data Subdirectory: 098063

Compounds/mixtures requested: Gore Chlorinated VOC Target Compounds (A10) plus vinyl

chloride.

Deviations from Standard Method: None

Comments: Soil vapor analytes and abbreviations are tabulated in the Data Table Key (page 6).

GORE-SORBER® Screening Survey Final Report

DATA TABULATION

CONTOUR MAPS ENCLOSED: Three (3) B-sized color contour maps **LIST OF MAPS ENCLOSED:**

- Tetrachloroethene (PCE)
- Trichloroethene (TCE)
- 1.1,1-Trichloroethane (111TCA)

NOTE: All data values presented in Appendix A represent masses of compound(s) desorbed from the GORE-SORBER Screening Modules received and analyzed by W.L. Gore, as identified in the Chain of Custody (Appendix A). The measurement traceability and instrument performance are reproducible and accurate for the measurement process documented. Semi-quantitation of the compound mass is based on either a single-level (QA Level 1) or three-level (QA Level 2) standard calibration.

General Comments:

- This survey reports soil gas mass levels present in the vapor phase. Vapors are subject to a variety of attenuation factors during migration away from the source concentration to the module. Thus, mass levels reported from the module will often be less than concentrations reported in soil and groundwater matrix data. In most instances, the soil gas masses reported on the modules compare favorably with concentrations reported in the soil or groundwater (e.g., where soil gas levels are reported at greater levels relative to other sampled locations on the site, matrix data should reveal the same pattern, and vice versa). However, due to a variety of factors, a perfect comparison between matrix data and soil gas levels can rarely be achieved.
- Soil gas signals reported by this method cannot be identified to soil adsorbed, groundwater, and/or separate-phase material. The soil gas signal reported from each module can evolve from all of these sources. Differentiation between soil and groundwater signals can only be achieved with prior knowledge of the site history (i.e., the site is known to have groundwater concerns only).
- QA/QC trip blank modules were provided to document any occurrence of constituents that were not part of the soil gas signal of interest (i.e., impact during module shipment, installation and retrieval, and storage). The trip blanks are identically manufactured and packaged soil gas modules to those modules placed in the subsurface. However, the trip blanks remain unopened during all phases of the soil gas survey. Levels reported on the trip blanks may indicate potential impact to modules other than the source of interest.

GORE-SORBER® Screening Survey Final Report

• Unresolved peak envelopes (UPEs) are represented as a series of compound peaks clustered together around a central GC elution time in the total ion chromatogram. Typically, UPEs are indicative of complex fluid mixtures that are present in the subsurface. UPEs observed early in the chromatogram are considered to indicate the presence of more volatile fluids, while UPEs observed later in the chromatogram may indicate the presence of less volatile fluids. Multiple UPEs may indicate the presence of multiple complex fluids.

Project Specific Comments:

- The minimum (gray) contour level, for each mapped analyte or group of analytes, was set at the maximum blank level observed or the MDL, whichever was greater. The maximum contour level was set at the maximum value observed.
- Stacked total ion chromatograms (TIC's) are included in Appendix A. The last four digits of each module number are incorporated into the TIC identification (e.g.: ATX9953TC.D represents module #169953).
- No target compounds were reported on any of the trip blanks or method blanks, suggesting
 that the levels reported from the field-exposed modules probably originated from the fieldexposure and are not a result of any trip-related or laboratory-related incident.
- The spatial distribution of the modules in this survey were located in linear fashion along several of the roads in this area. The interpretation was limited to an approximate distance of 50 feet from most of the modules. The data as illustrated on these maps are extrapolated between module locations, and confidence in the interpretation decreases with greater distances from the module locations.
- Several target compounds were reported from these survey results and most notably are the compounds that were plotted as color contour maps. Moderate to high levels of TCE were reported from these data, and the greatest mass appears around module location 170004, '005, '006, '007 and '008. Moderate to high levels of PCE were reported from several module locations, although not necessarily contiguous. Module locations 169978, 170026 and 170016 revealed the greatest mass of PCE. The 111TCA soil gas plume exhibits the greatest mass around module locations 170002, '004, and '008.
- The soil gas plume appears to extend into unsampled areas. If the objective of the soil gas survey was to delineate the nature and extent of the contamination, then additional soil gas sampling is recommended in those areas where the color contours appear to extend into unsampled areas.

GORE-SORBER is a registered trademark of W. L. Gore & Associates, Inc.

GORE-SORBER® Screening Survey Final Report

KEY TO DATA TABLE DaimlerChrysler, Dayton, OH

UNITS

μg micrograms (per sorber), reported for compounds

MDL method detection limit bdl below detection limit

nd non-detect

ANALYTES

ct12DCE cis- & trans-1,2-dichloroethene
t12DCE trans-1,2-dichloroethene
c12DCE cis-1,2-dichloroethene
VC vinyl chloride
11DCE 1,1-dichloroethene
11DCA 1,1-dichloroethane

CHCl₃ chloroform

111TCA1.1,1-trichloroethane12DCA1,2-dichloroethaneCC14carbon tetrachlorideTCEtrichloroethane112TCA1.1,2-trichloroethanePCEtetrachloroethene

CIBENZ chlorobenzene
1112TetCA 1.1,1.2-tetrachloroethane
1122TetCA 1.1,2.2-tetrachloroethane

13DCB 1.3-dichlorobenzene 14DCB 1.4-dichlorobenzene 12DCB 1.2-dichlorobenzene

BLANKS

TBn unexposed trip blanks, travels with the exposed modules

method blank QA/QC module, documents analytical conditions during analysis

APPENDIX A:

1. CHAIN OF CUSTODY
2. DATA TABLE
3. STACKED TOTAL ION CHROMATOGRAMS
4. COLOR CONTOUR MAPS

GORE-SORBER® Screening Survey Chain of Custo

For W.L. Gore & Assoc	ciates use only	
Production Order =	9806	3

W. L. Gore & Associates, Inc., Environmental Products Group

100 Chesaveake Boulevard • Elkton, Maryund 2192! • Tel. (410) 392-7600 • Fax (410) 506-4780

Customer Name: Listomer must com		Site Name:	hrys/		11.7.c	
Address: 1210 120 t Country	P	Site Address:	APY 5/	Day		Н
Swite 700	70001	- She Address:		1127	lan L	
5+. Paul. MN 55/12		Project Manager:		C.L.		
Phone: $\frac{51 - 490 - 1405}{651 - 490 - 1405}$		Customer Project		ラフレ	and	
FAX: $651 - 440 - 1006$		- 1		1 0	Duota di 1	2 2 2 4
		Customer P.O. #:	SCAK TO	F1.		2234
Serial = of Modules Shipped		= of Modules for I	Installation	100	≠or Trip Bla	nks 🗲
= (67953 through + 16	9995	Total Modules Sh	ippea:	05	Pi	eces
= [6999% through = 17	0057	Total Modules Re	ceived:	105	Pi	eces
	× 6.5	Total Modules Ins	tailed <u>:</u>	95	Pic	eces
= through ≠		Seriai ≠ of Trip Bl	anks (Client	Dec:des;	#	
= through #		#	7	· · · · · · · · · · · · · · · · · · ·	#	
GORE ANALYTICAL OPTION:	V - 1	T #	i ≓		#	
$[A_{\perp c}]$:+10	#	7		#	
Installation Performed By:		Installation Method	(s) (circle th	inse ina t i	πρίν):	
Vario (minera maine): () (1 / D. A)	A ' / '					
Name (piease print): Dave Strand Dand	Dr1560// (Slide Hammer	Hammer .		Auger	
Company/Affiliation: LBC	Driscoll (1	_			
Company/Affiliation: Lffc Installation Start Date and Time: 10/13/99		Slide Hammer	_	Onil		
Company/Affiliation: LBC		Slide Hammer Other:	Hammer .	Onil (Auger	
Company/Affiliation: LBC Installation Start Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/9 Retrieval Performed By:	/ //	Slide Hammer Other:	Hammer - 7 - 3	Onil (Auger AM) PM	ces
Company: Affiliation: LRC Installation Start Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Retrieval Performed By: Vame (please print): Dane () (50m / Dave)	/ //	Slide Hammer Other: /	Hummer	Onil (7	Auger AM) PM AM PM	
Installation Start Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Retrieval Performed By: Name (please print): Dane () (50m / Dave Company/Affiliation: LR/m	/ //	Slide Hammer Other: / / Total Modules Retr	Hummer - 7 - 3 / / / - 2 meveq:	73 2	AM PM AM PM Piece	ces
Installation Start Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Retrieval Performed By: Name (please print): Dane Olson Dave Company/Affiliation: LR/2 Retrieval Start Date and Time: 10/27/98	Stonnel	Slide Hammer Other: / / / Total Modules Rem Total Modules Lost	Hammer	73 2	AM) PM AM PM Piec	ces
Installation Start Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Retrieval Performed By: Name (please print): Dane Olson Dave Company/Affiliation: LR/2 Retrieval Start Date and Time: 10/27/98	Stonnel	Slide Hammer Other: / / / Total Modules Rem Total Modules Lost	Hammer	Onil 70 73 2 i:	AM PM AM PM Piec Piec	ces
Company: Affiliation: LRC Installation Start Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Retrieval Performed By: Name (please print): Date 10/50m / Dave Company: Affiliation: LRC Retrieval Start Date and Time: 10/27/98 Retrieval Complete Date and Time: 10/27/98	Stonnel	Slide Hammer Other: / / Total Modules Retr Total Modules Lost Total Unused Modu	Hammer	Onil 70 73 2 i: 10	AM PM Piece Piece AM PM	ces
Installation Start Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Retrieval Performed By: Name (please print): Dane Olson Dave Company/Affiliation: LR/2 Retrieval Start Date and Time: 10/27/98 Retrieval Complete Date and Time: 10/27/98 Retrieval Complete Date and Time: 10/27/98 Retrieval Complete Date and Time: 10/27/98	Stonuch Date Time	Slide Hammer Other: / / Total Modules Rem Total Modules Lost Total Unused Modu / / Received By:	Hammer	Onil 70 73 2 i: 10	Auger AM PM AM Phiese Piese AM PM AM PM AM PM	ces ces
Installation Start Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Retrieval Performed By: Name (please print): Dane Olson Dave Company/Affiliation: LR/2 Retrieval Start Date and Time: 10/27/98 Retrieval Complete Date and Time: 10/27/98 Retrieval Complete Date and Time: 10/27/98 Retrieval Complete Date and Time: 10/27/98	Stonnel 1 1 1 1 1 1 1	Slide Hammer Other: / / Total Modules Rem Total Modules Lost Total Unused Modu / / Received By:	Hammer	Onil 70 73 2 i: 10	Auger AM PM AM Phiese Piese AM PM AM PM AM PM	ces ces
Installation Start Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Retrieval Performed By: Name (please print): Dane Olson David Company/Affiliation: LRC Retrieval Start Date and Time: 10/27/98 Retrieval Complete Date and Time: 10/27/98 Retrieval Start Date and Time: 10/27/98 Retrieval Complete Date and Time: 10/27/98	Strand Date Time 8/98 12 0	Slide Hammer Other: / Total Modules Retr Total Modules Lost Total Unused Modu / / Received By Affiliation:	Hammer	Onil 70 73 2 i: 10	Auger AM PM Piece Piece AM PM AM PM Date	Time
Company: Affiliation: LRC Installation Start Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Retrieval Performed By: Vame (please print): Dane () Son Dave Company: Affiliation: LRC Remeval Start Date and Time: 10/27/98 Remeval Complete Date and Time: 10/27/98 Reinquished By Jan Associates, Inc. 10 Reinquished By Jane D. () Osan Refiliation: LBC		Slide Hammer Other: / Total Modules Retr Total Modules Lost Total Unused Modu / / Received By: Affiliation: Received By:	Hammer 7 - 3 / 1/4 - 2 nevea: in Field: ales Returned / 3 - 6	Onil 70 73 2 i: 10	Auger AM PM Piece Piece AM PM AM PM Date	Time
Company: Affiliation: LRC Installation Start Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Retrieval Performed By: Name (please print): Dane ()	Stonue	Slide Hammer Other: / Total Modules Retr Total Modules Lost Total Unused Modu / Received By: Affiliation: Received By: Affiliation: Received By: Affiliation: Received By: Affiliation:	Hammer 7 - 3 / 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Ortil 7 7 7 7 2 i:	Auger AM PM Piece Piece AM PM AM PM Date Date	Time Time
Installation Start Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Installation Complete Date and Time: 10/13/99 Retrieval Performed By: Name (please print): Dane Olson Dave Company/Affiliation: LR/2 Retrieval Start Date and Time: 10/27/98 Retrieval Complete Date and Time: 10/27/98 Retrieval Start Date and Time: 10/27/98 Retrieval Complete Date and Time: 10/27/98	Stonue	Slide Hammer Other: / Total Modules Rem Total Modules Lost Total Unused Modu / Received By: Affiliation: Received By: Affiliation: Received By:	Hammer 7 - 3 / 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Ortil 7 7 7 7 2 i:	Auger AM PM Piece Piece AM PM AM PM Date Date	Time

FORM 3R. -

		R [®] Exploratio	_	SITE/PROSPECT NAME & LOCATION					
Inst	allation and	l Retrieval Log	5	Daylor Thermal Preducts					
_	1.7	Installe Dave Strand	er's Signature Dome Olsen	1600 Webster St.					
Page of 3			L. Brian Kimpel	Day	len Ohio				
					MODEL				
					SETS				
LINE	MODULE #	INSTALLATION	RETRIEVAL	Check	Location	COMMENTS			
#		DATE/TIME	DATE/TIME	for	(e.g. weil ID)				
	2002	1 1 2 2 2 2 2 2 2		Yes	 				
l・ノ 2. ノ	169953		10/21/28 /3:12						
	+	7:43	13:14						
۱. را اد. را	5	1:46	13:15						
). <u>)</u>	6	7:49	13:16						
). 5. · ·	8	7:53	13:17						
	9	7:56	13:18						
		7:54	:3:19						
). 1	169960	7:02	13:20			44:11			
0.	2	8,02				Missing			
1.	3	8:37	/3:22						
$\frac{1}{2}$	4	8:15	13:23						
3	5	8:19	13:34	-					
4.	6	8 25	13:25						
5	7	8:30	13:27		•				
5	8	8:40	13.28						
7. /	9	8:45	13:29						
8.	164970	7:53	13:31			 			
9	161110	9:00	13'34						
0.	2	9:05	13.35			 			
1. /	3	9:10	13:37						
2.	4	9:3	13:39		 				
3. 7		9:17	13.40						
1. 1	6	9:30	13:41						
5.	7		(3:43						
5.	8	9:36	13:44						
7.	9	9: 33	13:45	-					
	16'1980	4.36	13:46			Missing"			
	1	9:38	12150			71135144			
. 🚽	2	9:40	13:50						
	3	9:42	13:51						
1	4	10:00	13:52						
+	5	10.03							
	- 6	10:06	14:01			101/100 0 0/101/1			
+	7	10:03	14:02			Lost-tag on string downkole			
	8	10:10	14:03						
	9	10:13	14:04						
	169990	10:16	14:05						
	101710		14:06						
	. 2	10:20	14:07						
·	· 2	10:33	14:08			Lost tag on string downhole.			

GO	RE-SORBE	R [®] Exploration	on Survey	SITE	/PROSPECT	NAME & LOCATION
		d Retrieval Lo	_		In Thermal	
11136	anation and			4 1		
Deer	2 of 3	Dave Stran	ller's Signature Id Dane Clsen		webster St	
Page _	<u> </u>	Dan Drix	coil Briga Kimpel	Da	yton Ohio	
			1	į	MODEL	
1.D.T.	NODIH E #	D'STALLATION	DETENTE VAL		SETS	COMMENTS
LINE #	MODULE #	INSTALLATION DATE/TIME	RETRIEVAL DATE/TIME	Check for	Location (e.g. well ID)	COMMENTS
"		BATTE THILD	D. C. Z. T. I.VIL	Yes	(c.g. wen 12)	
1.	169993	10/13/98 10:26	10/27/98 14:08			
2. –	4	1 10:32	14:09			
3.	5	10:38	14:10			
4.	164998	10.41	14:12			
5.	9	11:41	14:30			
6.	170000	11:48	14:31			Lost tag onstring downhole
7.		11:52	14:33			,
8.	2	11:55	14:34			
9. ¬	3	11:58	14:36			
10	4	12:00	14:38			
11.	5	13:03	14:39			
12. —	6	12:09	14:40			
14.	7	13:11	ान, ना			
15.	8	12:15	14:42		<u> </u>	1
16.	1700 io	12:17	14:43			
17.	170010	12:23	14:44 14:45			<u> </u>
18.	2	12:36	14:46			
19	3	12:30	14:47			
20.	4	12:33	14:48			
21.	5	12:36	14:49			
22	6	12:42	14:51			
23. —	7	12:45	14!53		:	
24.	8	12:46	14:54			
25. /	9	12:48	14:55			List Lug on string downhole
26.	170020	12:54	14:56			
27. +	i	12:57	14:56		<u></u>	
28.	2	12:58	14:58			
29.	3	13:03	14:59			·
30. —		13:05	15:00			
32.			d - Dainaged both	He		
33.	6	13:08	15:01	_		
34.	8	13.11	15 0 3		<u> </u>	
35.	9	13:15	15:04			Lest tog on string downhole
	1700 30	13:17	15:05			
37.	1	13:20	15.06			1 la classification
38.	2	13:23	15:09			1. I tay on String downhole
39.	3	13:25	15:10			
40.	4	13.30	15.11			
				!		**************************************

GOI	RE-SORBE	R [®] Exp	oloratio	on S	urve	v	SITE	PROSPECT	NAME & LOCATION				
1	allation and	_			•	,	Dayton Thermal Products						
				=	gnature		•	o webster 51					
Page	3 of 3	Dav	Installe Strand,	Dane	Olson		1						
		Bed	an Kimpel	Dan Drixell			Dayton, Ohio MODEL						
							•	SETS					
LINE	MODULE#	INSTAL	LATION	R	ETRIE	VAL	Check	Location	COMMENTS				
#		DATE	TIME	l c	ATE/T	IME	for	(e.g. well ID)					
		 		ļ			Yes						
1.	170035	10/13/98	13:40	10/2	1/98	15:12		ļ					
2 3	<u></u>		13:59			15:21			1, 17 11 11				
4.	<u> </u>	 	14:00			15:22		<u> </u>	lost tag on string downhale				
5.	<u> </u>		14:02			15:23 15:35		 					
6.	170040	 	14:05			15:35							
7.	- 1		14:12		<u> </u>	15:27	···						
8.	2		14:14			15:29							
9. –	3		14.16			15:30							
10. –	4		14:18]		15:35							
11.	5		14:20			15:36	<u></u>						
12. —	<u> </u>	<u> </u>	14:20			15:31							
14.	7		14·23	/		15:38							
15.	_		14:35		/	15:39 15:40	· · · · · · · · · · · · · · · · · · ·						
16.	End of Same	LINA CUENT				13.10	_						
17.	Tary	7	1										
18.													
19.													
20.													
21.													
22. 23.		·											
24.						-							
25.													
26.				<u> </u>			-						
27.													
28.													
29.													
30.													
31.													
33.													
34.													
35.													
36.													
37.								 					
38.													
39.													
40.													

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS LEGETTE, BRASHEARS, AND GRAHAM.

ST. PAUL, MN

GORE CHLORINATED VOC PLUS VINYL CHLORIDE (A10+ VC) DAYTON THERMAL PRODUCTS, DAYTON, OH SITE ATX, PRODUCTION ORDER NO. 098063

DATE	MODULE	<u> </u>				<u> </u>				
ANALYZED	NUMBER	ct12DCE. ug	t12DCE, ug	c12DCE, ug	VC, ug	11DCE, ug	11DCA, ug	CHCl3, ug	111TCA, ug.	12DCA. ug
	MDL=	0.02	0.03	0.02	0.30	0.03	0.03	0.01	0.03	0.C-
10/29/98	169953	nd	nd	nd	nd	nd	nd	0.03	bdl	na
10/29/98	169954	nd	nd	nd	nd	nd	nd	nd	0.04	na
10/29/98	169955	nd	nd	nd	nd	nd	nd	nd	0.09	na
10/29/98	169956	nd	nd	nd	nd	nd	nd	nd	nd	na
10/29/98	169957	nd	nd	nd	nd	nd	nd	ndi	nd	лo
10/29/98	169958	nd	nd	nd	ndi	nd	nd	ndi	nd	na
10/29/98	169959	nd	ndl	nd	nd	nd	nd	nd	nd	na
10/29/98	169960	nd	nd	nd	nd	nd	nd	0.02	nd	na
10/29/98	169962	nd	nd	ndi	nd	bdi	nd	0.03	0.08	лс
10/29/98	169963	nd	nd	ndi	ndi	nd	nd	nd	nd	nc
10/29/98	169964	nd	nd	nd	nd	nd	nd	0.02	nd	nc
10/29/98	169965	nd	nd	ndi	nd	nd	nd	nd	nd	nc
10/29/98	169966	nd	nd	nd	nd	nd	nd	nd	nd	nc
10/29/98	169967	nd	nd	nd	nd	nd	nd	nd	nd	nc
10/29/98	169968	nd	nd	nd	nd	nd	ndi	nd	nd	nc
10/29/98	169969	nd	nd	nd	nd	nd	nd	nd	nd	nc
10/29/98	169970	nd	nd	nd	nd	nd	nd	ndi	nd	na
10/29/98	169971	nd	nd	nd	nd	nd	nd	nd	0.03	nc
10/29/98	169972	nd	nd	nd	nd	nd	nd	nd	nd	na
10/29/98	169973	nd	nd	nd	nd	nd	nd	nd	nd	na
10/29/98	169974	nd	nd	nd	nd	nd	na	nd	nd	na
10/29/98	169975	nd	nd	nd	nd	nd	nd	ndl	nd	na
10/29/98	169976	nd	nd	nd	nd	nd	nd	0 02	nd	na
10/29/98	169977	nd	nd	nd	nd	nd	nal	nd	nd	na:
10/29/98	169978	nd	nd	nd	nd	nd	na	0 04	nd	
10/29/98	169979	nd								nai
10/29/98	169979		nd	nd	nd	nd	nd	nd	nd	na
10/29/98	169982	nd nd	nd	nd	nd	nd	nd	0 10	nd	na.
10/29/98	169983	nd	nd	nd	nd	nd	nal		ndl	nat
10/29/98	169984		nd	nd	nd	nd	nal	nd	nd	na!
10/29/98	169985	nd	nd	nd	nd	nd		nd	nd	nal
	169987	nd	nd	nd	nd	bdl	na!	70	0.13	na
10/29/98		nd	nd	nd	nd.	nd		0.02	nd	na
10/29/98	169988	nd	nd	nd	nd	nd	<u>a </u>	na	nd	na!
10/29/98	169989	nd	nd	nd	nd	nd		nd	pai	na
10/29/98	169990	nd	nd	nd	nd	nd	<u>"31</u>	nal	0.55	na
10/29/98	169991	nd	nd	nd	nd	nd		,q	nd	na
10/29/98	169992	na	ndi	nd	nd	nd	<u>ng)</u>	1.12	0.03	ndi
10/29/98	169993	nd	nd	nd	nd	nd	. 11	,a	nd	na
10/29/98	169994	nd	nd	nd	nd	nd		2 23	nd	nal
10/30/98	169995	nd	nd	nd	nd	nd	ai	nd	nd	nai
10/30/98	169998	nd	nd	nd	nd	nd	ngl	na	nd	ndi
10/30/98	169999	na	nd	nd	nd	nd		a	0.06	nd
10/30/98	170000	nd	nd	nd	nd	0.03	nai		0.14	na
10/30/98	170001	nd	nd	nd	nd	nd	nal	na	0.38	nai
10/30/98	170002	0.07	bdi	0.05	nd	0.04	a!	nd.	0.92	bdi
10/30/98	170003	nd	nd	nd	nd	nd	nal	ndi	0.08	na
10/30/98	170004	0.50	0.16	0.34	nd	0.07	2.154	0.01	2.11	0.10
10/30/98	170005	nd	nd	nd	nd	nd	la ^r	מר	0.18	nd
10/30/98	170006	0.17	0.05	0.12	nd	0.06		nd	0.52	nd
10/30/98	170007	nd	nd	nd	nd	nd	าตุ	ומוי	0.03	nd
10/30/98	170008	1 17	0.17	1.00	nd	0.06		. 23	0.74	ba!
10/30/98	170009	nd	nd	nd	nd	nd	nd	1d	nd	nd
10/30/98	170010	nd	nd	nd	nd	nd	na	nd	nd	na
10/30/98	170011	0 11	0.03	0.08	nd	0 04	- lar	- 2	0 70	bdi

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS LEGETTE, BRASHEARS, AND GRAHAM,

ST. PAUL, MN

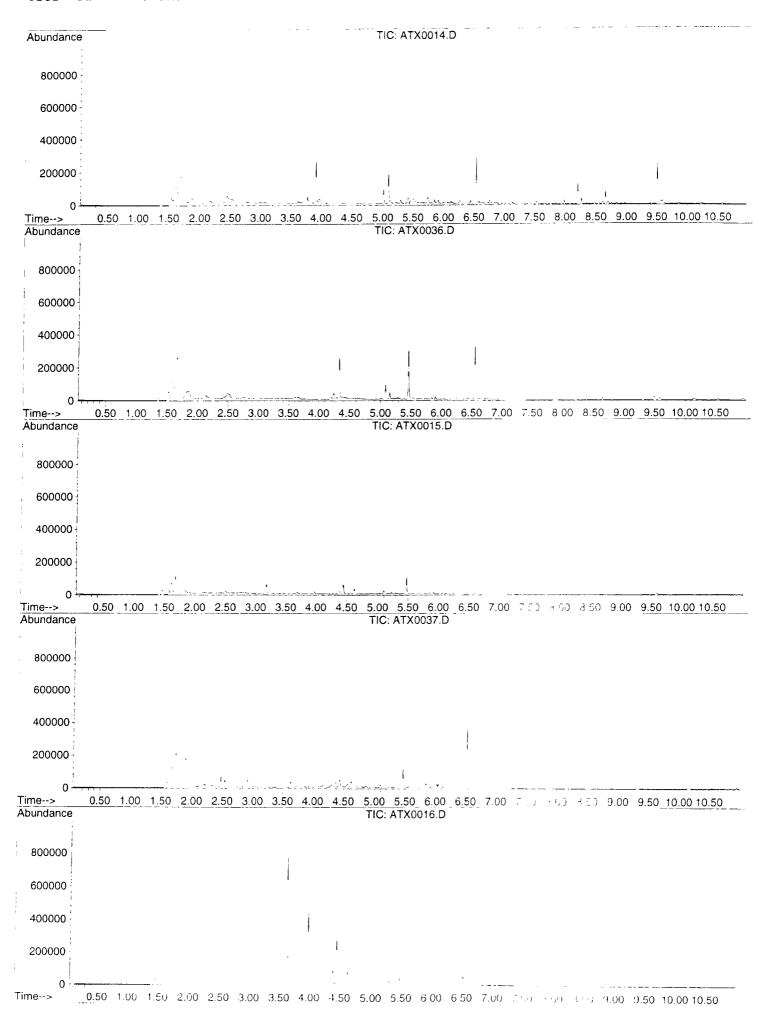
GORE CHLORINATED VOC PLUS VINYL CHLORIDE (A10+ VC) DAYTON THERMAL PRODUCTS, DAYTON, OH SITE ATX, PRODUCTION ORDER NO. 098063

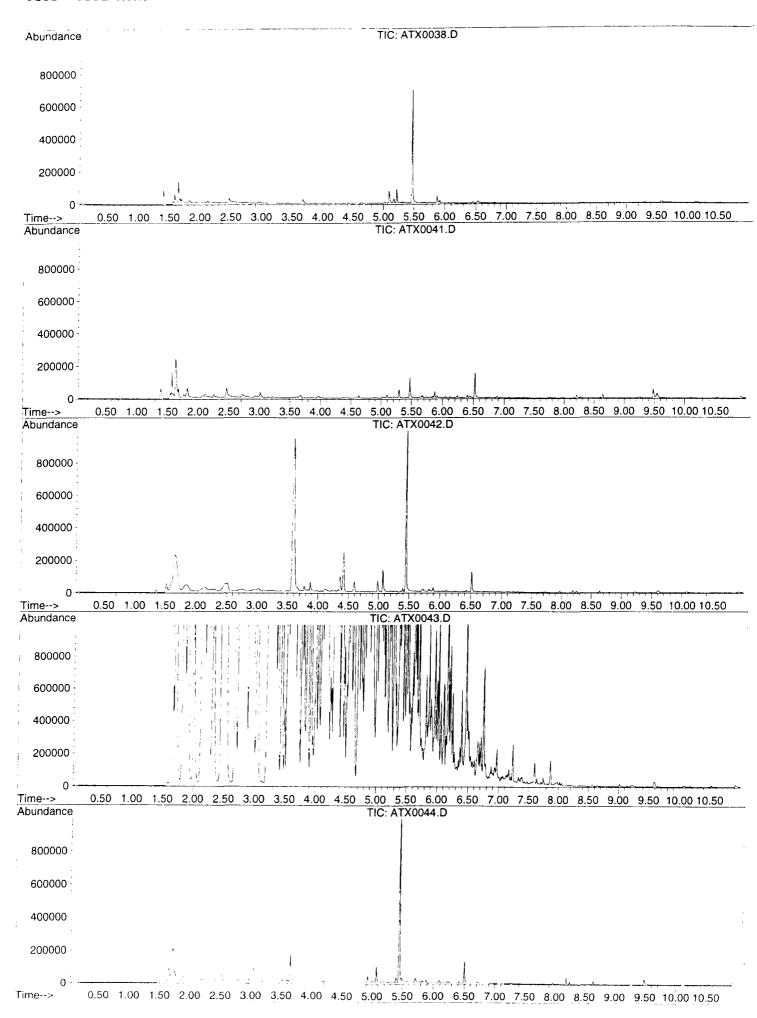
DATE	MODULE	.440505	M0D05	-40005	1,0	44005	44004	CHCI2 ···	111704	12004
ANALYZED	NUMBER			c12DCE, ug						
	MDL=	0.02	0.03	0.02	0.30		0.03	0.01	0.03	0
10/30/98	170012	nd	nd	nd	nd		nd	nd	ndi	
10/30/98	170013	nd	nd	nd	nd	nd	nd	nd	nd	
10/30/98	170014	nd	ndi	nd	nd	nd	nd	0.61	nd	
10/30/98	170015	nd	nd.	nd	nd	nd	nd	nd.	nd	
10/30/98	170016	nd	nd	nd	nd	nd	nd	nd	nd	
10/30/98	170017	nd.	nd	nd	nd	nd	nd.	0.05	nd	
10/30/98	170018	nd	nd nd	nd	nd	nd	nd	nd	nd	
10/30/98	170019	nd	nd	nd	nd	nd	nd	0.02	nd	
10/30/98	170020	ndi	nd	nd	nd	nd	nd	0.06	nd	
10/30/98	170021	nd	nd	nd	nd	nd	nd	0.02	nd	
10/30/98	170022	nd	nd	nd	nd	nd	nd	nd	nd	
10/30/98	170023	nd	nd	nd	nd	nd	nd	0.02	nd	
10/30/98	170024	nd	nd	nd	nd	nd	nd	0.04	nd	
10/30/98	170026	nd	nd	nd	nd	0.03	nd	nd	0.37	
10/30/98	170027	nd	nd	nd	nd	nd	nd	nd	nd	
10/30/98	170028	nd	nd	nd	nd	nd	nd	nd	nd	
10/30/98	170029	nd	nd	nd	nd	nd	nd	nd	nd	
10/30/98	170030	nd	nd	nd	nd	nd	nd	nd	nd	
10/30/98	170031	nd	nd	nd	nd	nd	nd	0.02	nd	
10/30/98	170032	nd	nd	nd	nd	nd	nd	nd	nd	
10/30/98	170033	nd	nd	nd	nd	nd	nd	nd	nd	
10/30/98	170034	nd	nd	nd	nd	nd	nd	nd	nd	
10/30/98	170035	nd	nd	nd	nd	nd	nd	nd	nd	
10/30/98	170036	nd	nd	nd	nd	nd	nd	0.04	nd	
10/30/98	170037	nd	nd	nd	nd	nd	nd	nd	nd	
10/30/98	170038	nd	nd	nd	nd	nd	nd	nd	nd	
10/31/98	170039	nd	nd	nd	nd	nd	nd	nd	nd	
10/31/98	170040	nd	nd	nd	nd	nd	nd	nd	nd	
10/31/98	170041	nd	nd	nd	nd	nd	nd	nd	0.03	
10/31/98	170042	nd	nd	nd	nd	nd	nd	nd	nd	
10/31/98	170043	0.04	nd	0.04	nd	nd	nd	nd	nd	t
10/31/98	170044	nd	nd	nd	nd	nd	nd	0.03	nd	
10/31/98	170045	nd	nd	nd	nd	nd	nd	nd	nd	
10/31/98	170046	nd	nd	nd	nd	nd	nd	0.07	nd	
10/31/98	170047	nd	nd	nd	nd	nd	nd	0.15	nd	
10/31/98	170048	nd	nd	nd	nd	nd	nd	nd	nd	-
10/31/98	170049	nd	nd	nd	nd	nd	nd	0.37	nd	-
11/11/98	TB1 - 170050	nd	nd	nd	nd	nd	nd	nd	nd	
11/11/98	TB2 - 170051	nd	nd	nd	nd	nd	nd	nd	nd	
11/11/98	TB3 - 170052	nd	nd	nd	nd	nd	nd	nd	nd	r
11/11/98	TB4 - 170053	nd	nd	nd	nd	nd	nd	nd	nd	<u>·</u>
10/28/98	method blank	nd	nd	nd	nd	nd	nd	nd	nd	r
10/29/98	method blank	nd	nd	nd	nd	nd	nd	nd	nd	n
10/30/98	method blank	nd	nd	nd	nd	nd	nd	nd	nd	
10/31/98	method blank	nd	nd	nd	nd	nd	nd	nd	nd	n

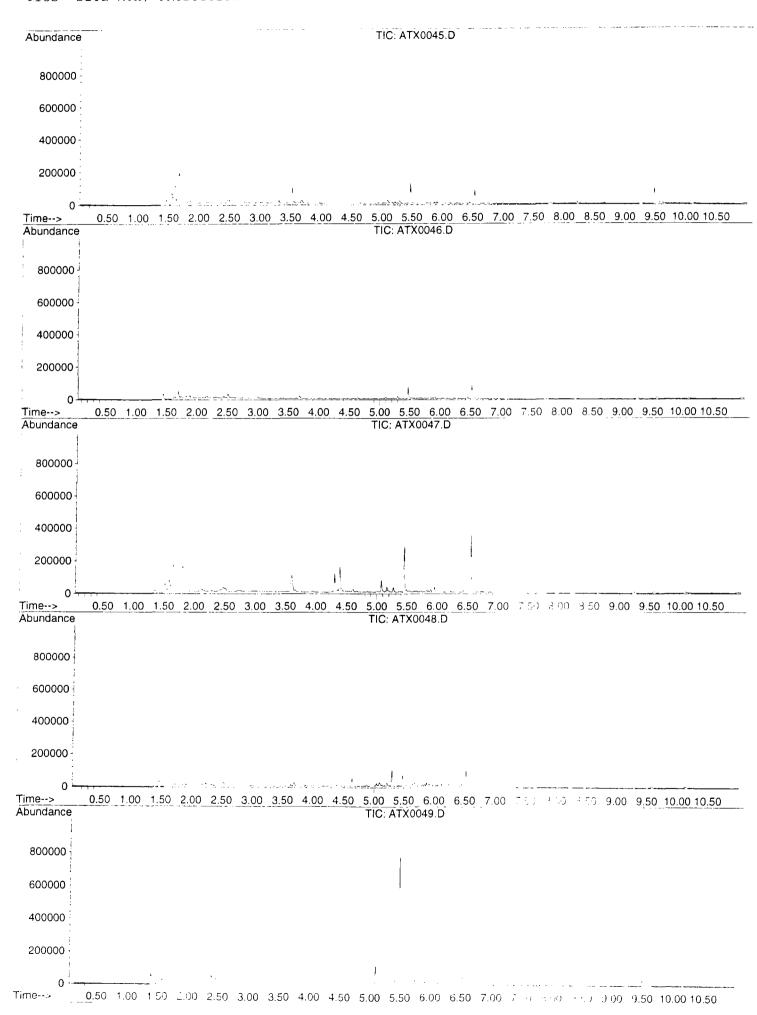
GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS LEGETTE. BRASHEARS, AND GRAHAM,

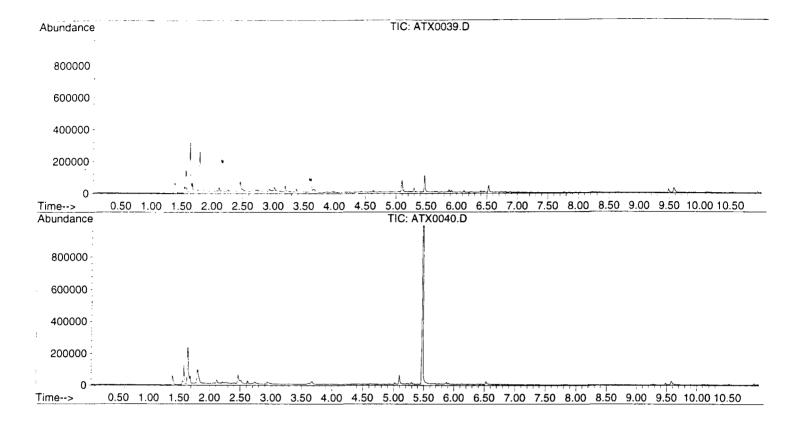
ST. PAUL, MN

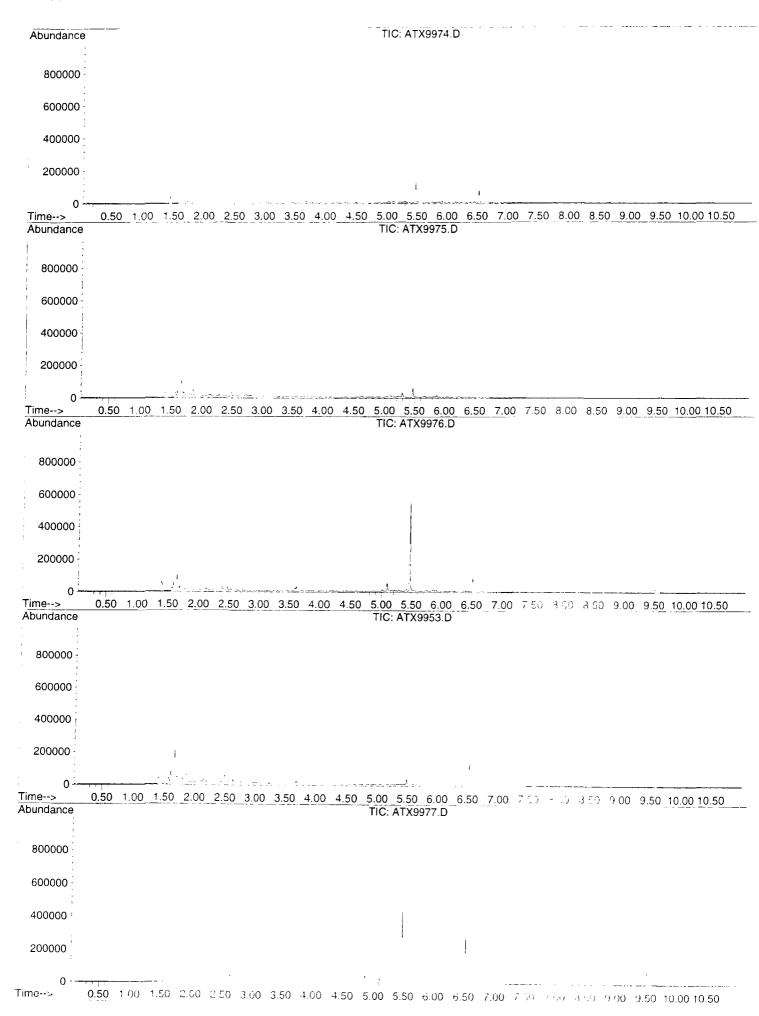
GORE CHLORINATED VOC PLUS VINYL CHLORIDE (A10+ VC)
DAYTON THERMAL PRODUCTS, DAYTON, OH
SITE ATX, PRODUCTION ORDER NO. 098063

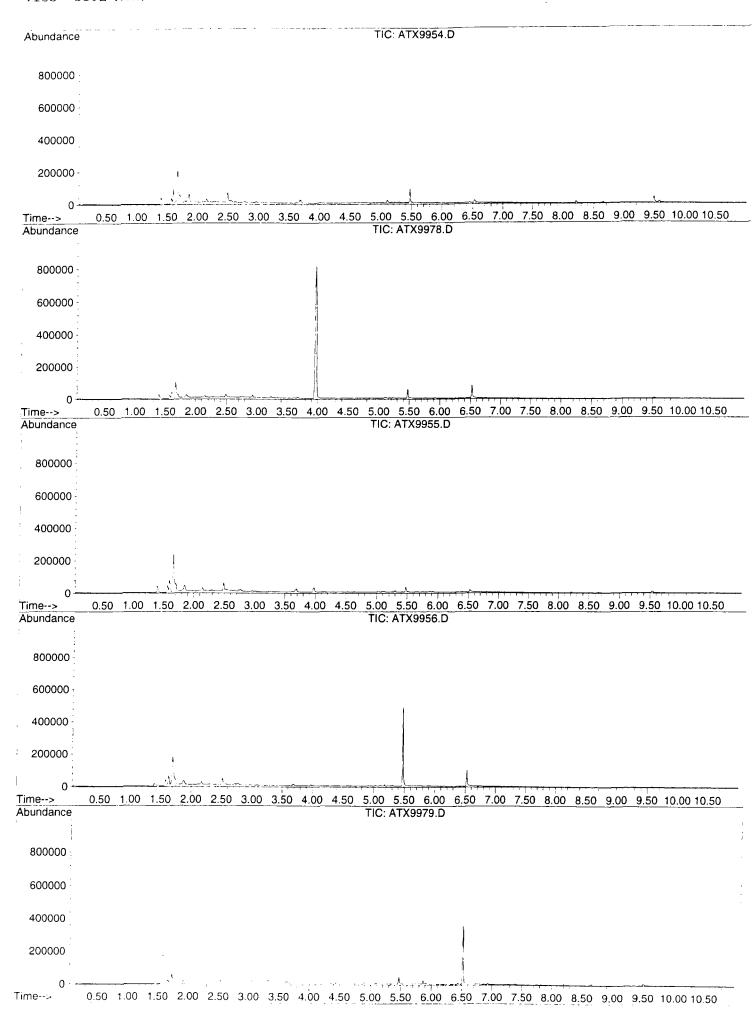

MODULE	<u> </u>		-		-					
NUMBER	CCl4, ug	TCE. ug	112TCA, ug	PCE, ug	CIBENZ, ug	1112TetCA, ug	1122TetCA, ug	13DCB. ug	14DCB, ug	12DCB. ug
MDL=	0.02	0.03	0.03	0.03	0.04	0.03	0.02	0.01	0.02	0.02
169953	nd	bdl	nd	nd	nd	nd	nd	0.01	bdi	
169954	nd	nd	nd	bdl	nd	nd	nd	nd	bal	bdl
169955	nd	nd	nd	0.18	nd	nd	nd	nd	nd	nd
169956	nd	nd	nd	0.04	nd	nd	nd	nd	nd	nd
169957	nd	nd	nd	0.29	nd	nd	nd	nd nd	nd nd	nd nd
169958	nd	nd	nd	0.13	nd	nd)	nd) nd	nd	nd	nd
169959 169960	nd nd	nd nd	nd	0.09	nd ndi	nd.	nd	nd	nd	nd
169962	nd	bdi	ndi ndi	0.20	ndi	nd	nd	nd	nd	nd
169963	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
169964	nd	nd	nd	bdi	nd	nd	nd	nd	nd	nd
169965	nd	nd	nd	0.03	nd	nd	nd	nd	nd	nd
169966	nd	nd	nd	bdl	nd	nd	nd	nd	nd	nd
169967	nd	nd	nd	0.03	nd	nd	nd	nd	nd	nd
169968	nd	nd	nd	0.06	nd	nd	nd	nd	nd	nd
169969	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
169970	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
169971	nd	1.95	nd	nd	nd	nd	nd	nd	nd	nd
169972	nd	nd	nd	bdl	nd	nd	nd	nd	nd	nd
169973	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd.
169974	nd	nd	nd	0.03	nd	nd	nd	nd	nd	nd
169975	nd	nd	nd	bdl	nd	nd	nd	nd	nd	nd
169976	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
169977	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
169978	nd	nd	nd	4.73	nd	nd	nd	nd	nd	na
169979	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
169981	nd	nd	nd	nd	nd	nd	ndl	nd	nd	nd
169982	nd	nd	nd	nd nd	nd	nd	nal	nd	nd	nd
169983 169984	nd)	nd	nd)	0.11	nd	nd	nal	nd	nd	nd)
169985	nd nd	nd nd	nd nd	0.11	nd nd	nd nd	nal	na na	nd nd	nd nd
169987	nd	0.12	nd	0.07	nd	nd	nal	nal	nd	nd
169988	nd	nd	nd	nd	nd	nd	nal	nd	nd	ndl
169989	nd	nd	nd	0.03	nd	nd	nal	nai	nd	nd
169990	nd	nd	nd	bdl	nd	nd	nal	nd	nd	nd
169991	nd	nd	nd	bdi	nd	nd	na	nd	nd	nd
169992	nd	nd	nd	nd	nd	nd	nal	na	nd	nd
169993	nd	nd	nd	nd	nd	nd	nai	nai	nd	nd
169994	nd	bdl	nd	0.03	nd	nd	nai	nal	nd	nd
169995	nd	nd	nd	bdl	nd	nd	nal	na	nd	nd
169998	nd	nd	nd	nd	nd	nd	nal	nal	nd	nd
169999	nd	0.93	nd	0.06	nd	nd	na	na	nd	nd
170000	nd	0.38	nd	bdl	nd	nd	nal	מח	nd	nd
170001	nd	0.16	nd	0.04	nd	nd	ndl	na	nd	nd
170002	nd	21 48	nd	0.15	nd	nd	nal	na	nd	nd
170003	nd	1.62	nd	0.03	nd	nd	nal	nai	nd	nd
170004	nd	110 76	nd	0.30	nd	nd	nal	na	nd	nd
170005	nd	12.32	nd	0.10	nd	nd	nal	na	nd	nd
170006	nd	123.03	ndl	80.0	nd	nd	na	nd	nd	nd
170007	nd	58.57	nd	0.03	nd	nd	na	na	nd	nd
170008	nd	183.44	nd	0.07	nd	nd	ndl	na	nd	nd
170009 170010	nd	2.84	nd	nd	nd	nd	na	na	nd	nd
170010	nd nd	nd 164 59	nd nd	0.06 1.32	nd	nd nd	nd	nal	nd	nd
1/0011	nu	104 031	nul	1 321	nd	nal	nal	ומת	nd	nd

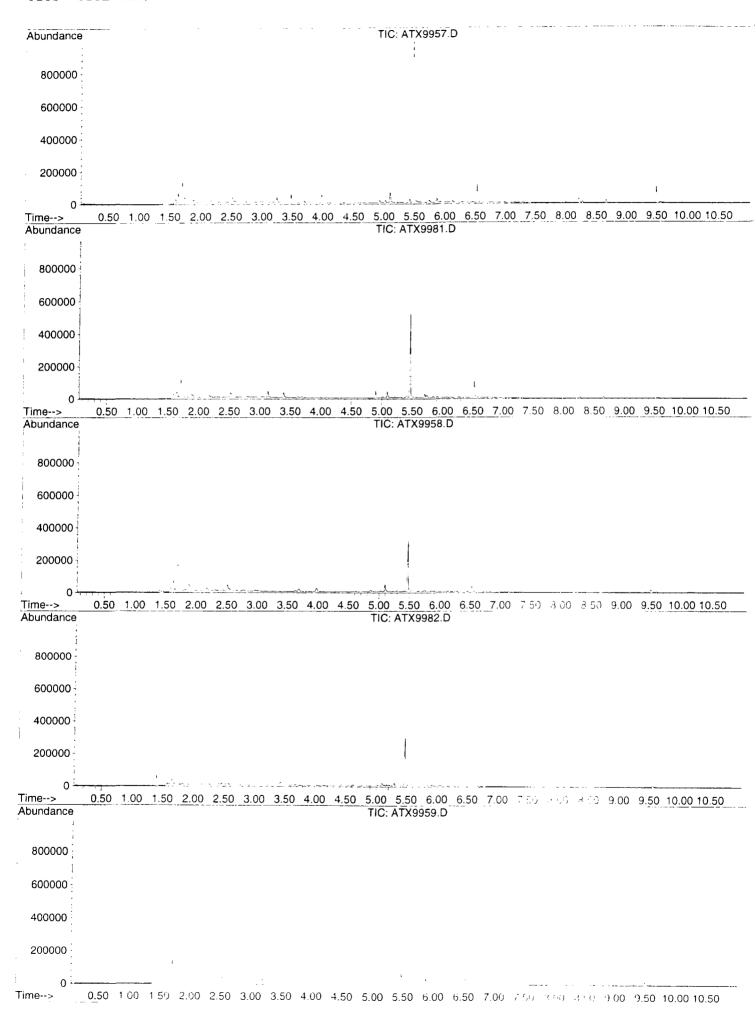

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS LEGETTE, BRASHEARS, AND GRAHAM,

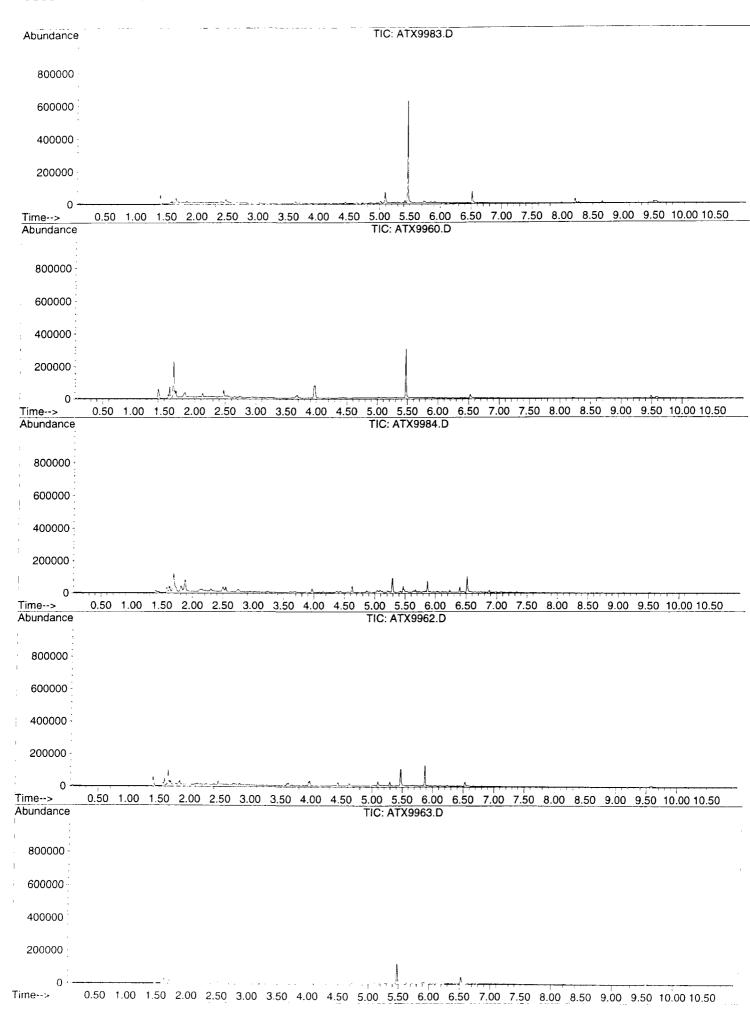

ST. PAUL, MN

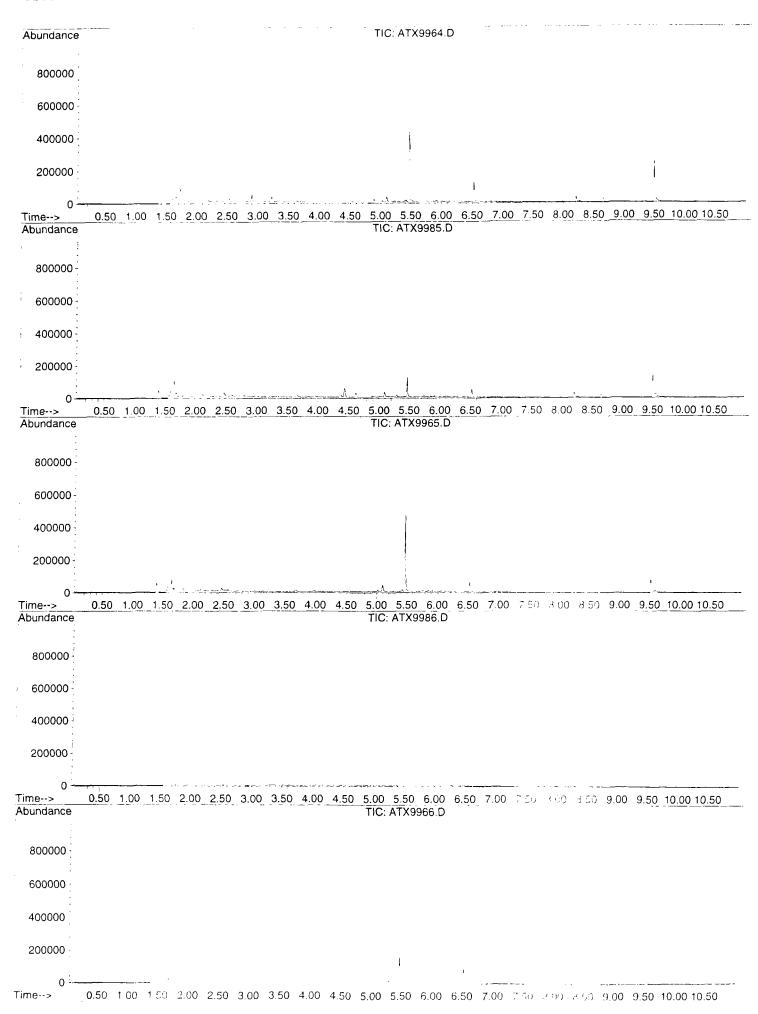

GORE CHLORINATED VOC PLUS VINYL CHLORIDE (A10+ VC) DAYTON THERMAL PRODUCTS, DAYTON, OH SITE ATX, PRODUCTION ORDER NO. 098063

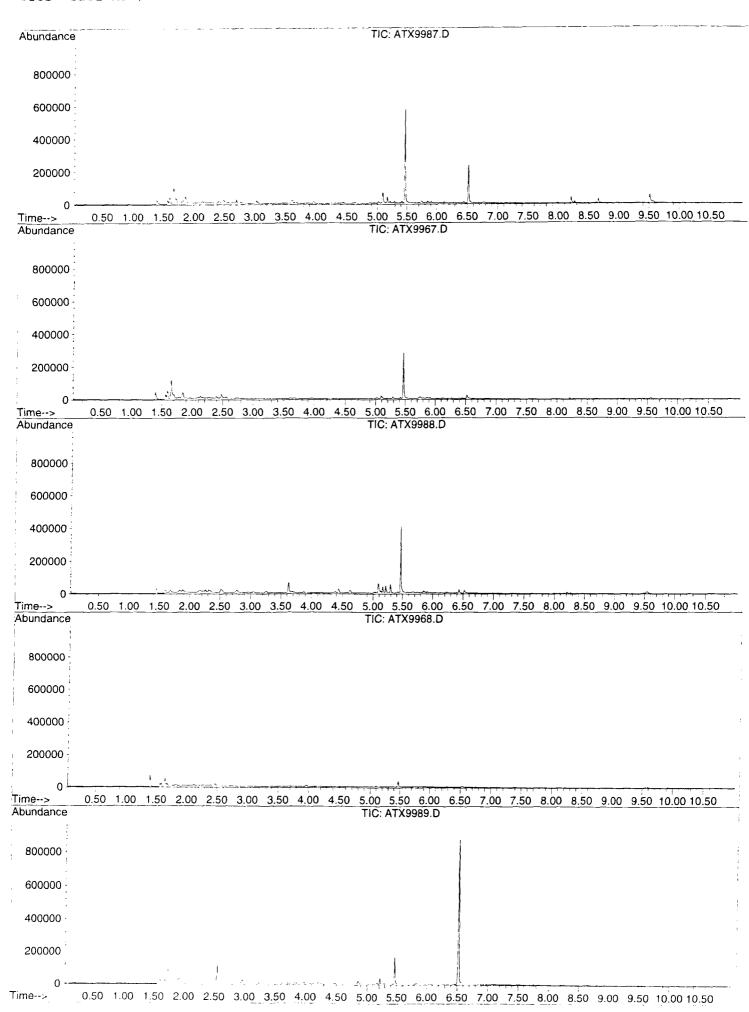

MODULE	1		<u></u>				1			
NUMBER	CCIA Ha	TCE up	112TCA ug		CIRENZ UG	1112TetCA ug	1122TetCA, ug	13DCB ug	14DCB ug	12DCB ug
MDL=	0.02	0.03	0.03	0.03	0.04	0.03		0.01	0.02	0.02
170012	nd	0.08	nd	0.35	nd	nd	nd	nd	nd	nd
170013	nd	bdl	nd	0.17	nd	nd	nd	nd	nd	nd
170014	nd	0.10	nd	0.15	nd	nd	nd	nd	nd	nd
170015	nd	nd	nd	0.13	ndi	nd	nd	nd	nd	nd
170016	nd	bdl	nd	2.04	nd	nd	nd	nd	nd	nd
170017	nd	0.05	nd	0.11	nd	nd	nd	nd	ndi	nd
170018	nd	0.03	nd	0.10	nd	nd	nd	nd	nd	nd
170019	nd	bdl	nd	0.03	nd	nd	nd	nd	nd	nd
170020	nd	bdl	nd	0.03	nd	nd	nd	nd	nd	nd
170021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
170022	ndi	nd	nd	bdl	nd	nd	nd	nd	nd	nd
170023	nd	nd	nd	bdl	nd	nd	nd	nd	nd	nd
170024	nd	nd	nd	0.06	nd	nd	nd	nd	nd	nd
170026	nd	1.06	nd	6.79	nd	nd	nd	nd	nd	nd
170027	nd	nd	nd	0.12	nd	nd	nd	ndi	nd	nd
170028	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
170029	nd	nd	nd	nd	nd	nd	nd	nd	ndi	nd
170030	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
170031	nd	bdi	nd	bdl	nd	nd	nd	nd	nd	ndi
170031	nd	nd	nd	bdl	nd	nd	nd	nd	nd	nd
170033	nd	nd	nd	bdi	nd	nd	nd	nd	nd	nd
170034	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
170035	nd	0.11	nd	nd	nd	nd	nd	nd	nd	nd
170036	nd	0.03	nd	nd	na	nd	nd	nd	nd	nd
170037	nd	nd	nd	bdl	nd	nd	nd	nd	nd	nd
170037	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
170039	nd	0.21	nd	0.04	nd	ndi	nd	nd	nd	nd
170040	nd	nd	nd	bdl	nd	nd	nd	nd	nd	nd
170040	nd	0.22	nd	0.09			nd	nd	nd	
170041	nd	0.22	nd	bdl	nd	nd				nd
170042	nd	0.06	0.06	0.05	ndi	nd	nd) 0.27	nd	nd	nd
170043	nd	0.62	0.001 nd	0.03	nd nd	nd nd	0.27	nd nd	nd nd	nd
170045	nd	0.05	nd	bdl	nd	nd	nd	nd	nd	nd
170045	nd	nd	nd	bdl	nd	nd	nd	nd	nd	nd nd
170047	nd	0.05	nd	0.05	nd	nd	nd	nd	nd	nd
170048	nd	bdi	nd	bdl	nd	nd	nd	nd	nd	nd
170049	nd	0.03	nd	0.03	nd	nd	nd	nd	nd	nd
,,,,,,,	110	0.00	- III	0.03	110	iiu	riu	nu	iiu i	Tiu
TB1 - 170050	nd	nd	nd	nd	nd	nd	nd	nd	nd	
TB2 - 170051	nd	nd	nd	nd	nd	nd			nd	nd
TB3 - 170052	nd	nd	nd	nd	nd	nd	nd	nd		nd
TB4 - 170053	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
154 - 170000	110		nu	- III	nu	na na	nd _	nd	nd	nd
method blank	nd	nd	nd	nd	nd	nd	nd			
method blank	nd	nd	nd	nd				nd	nd	nd
method blank	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
method blank	nd	nd	nd	nd	nd	nd nd	nd	nd	nd	nd
modiod blank	1107	- iu	- nu	iiu	nd	iiu	nd	nd	nd	nd

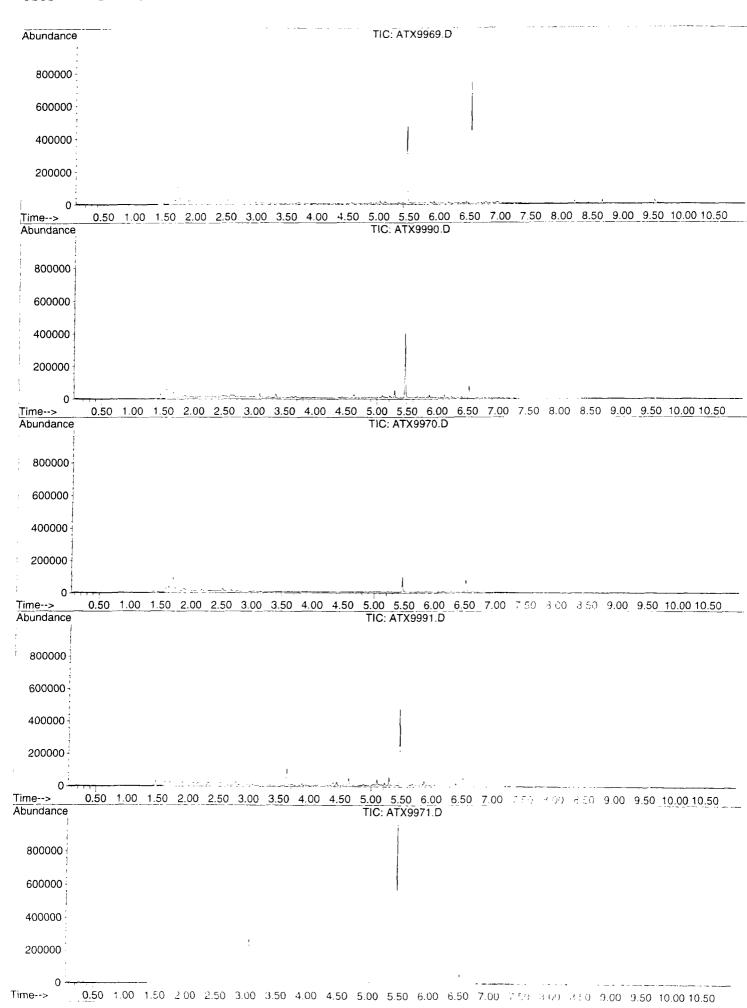


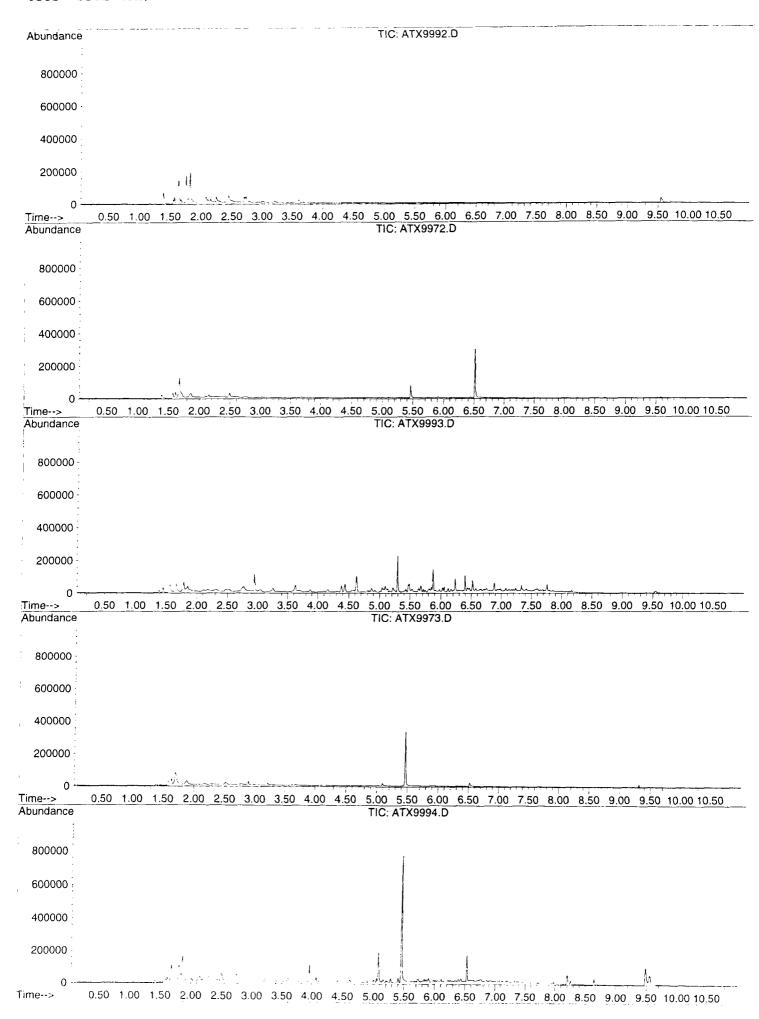


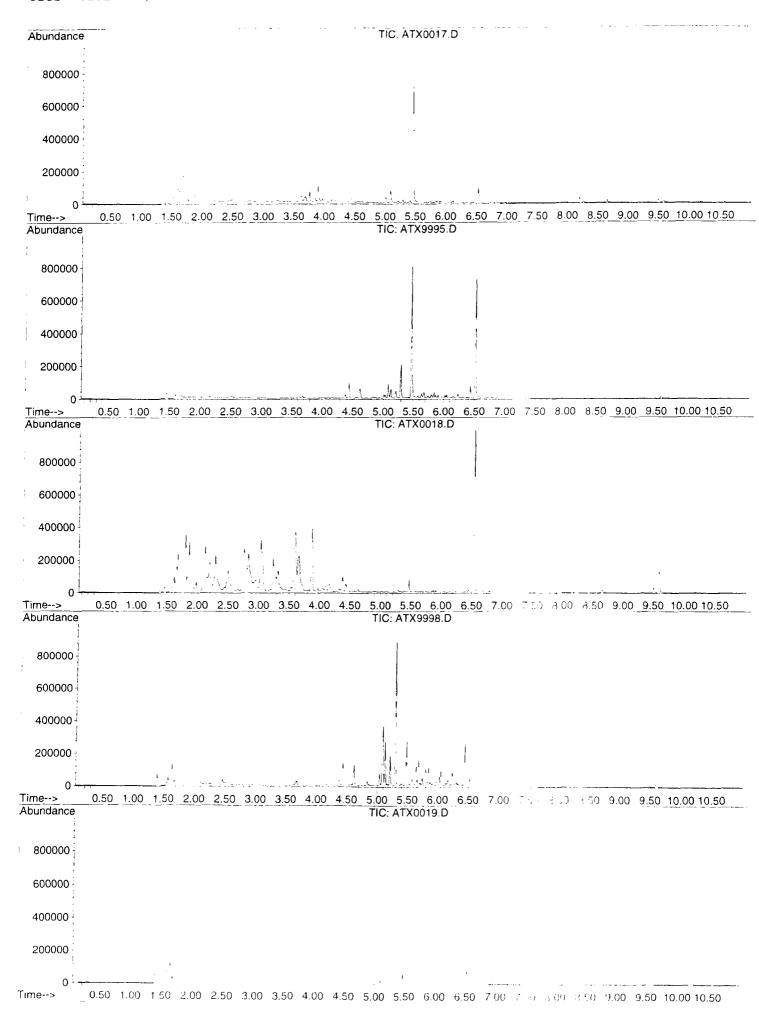


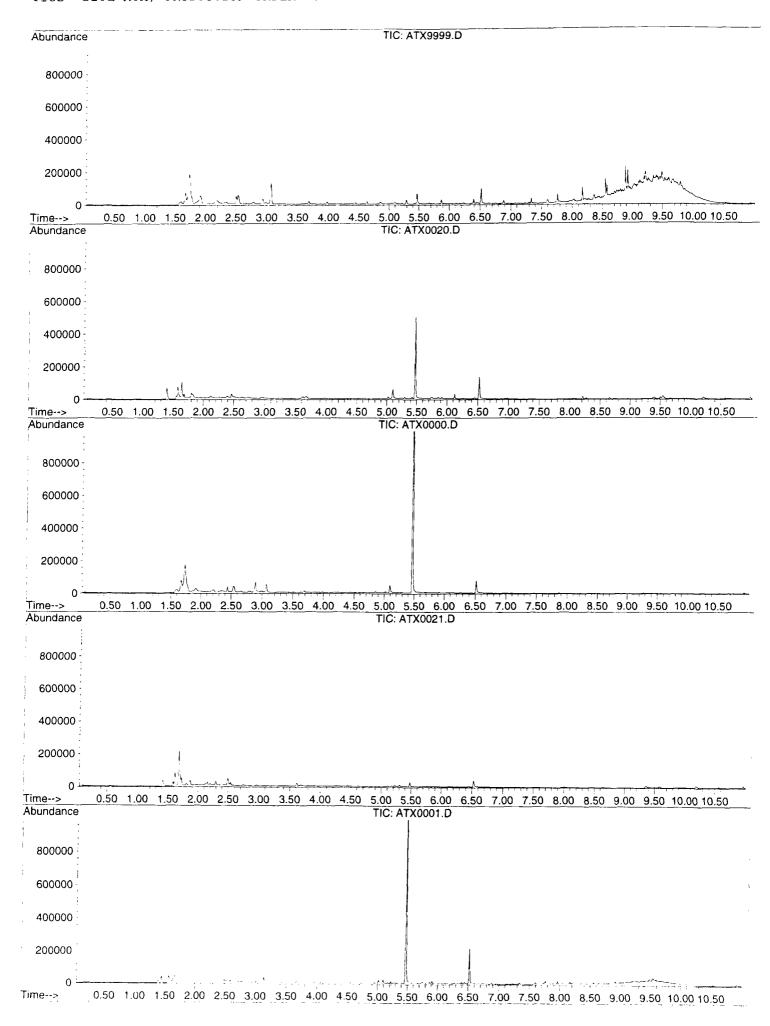


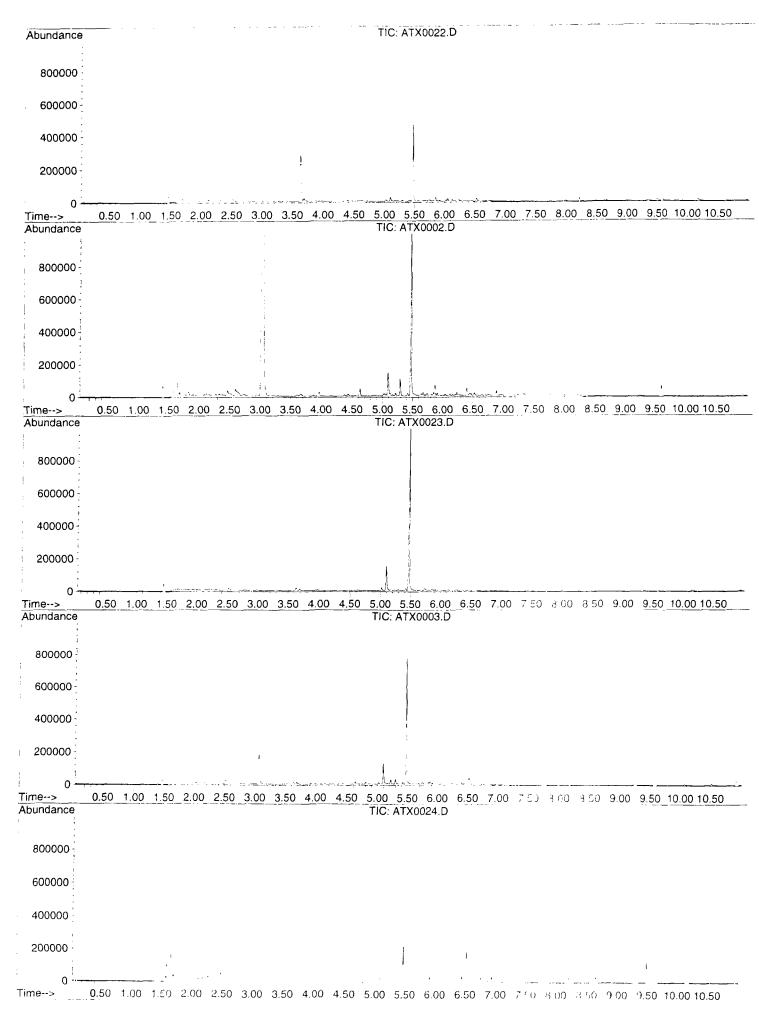


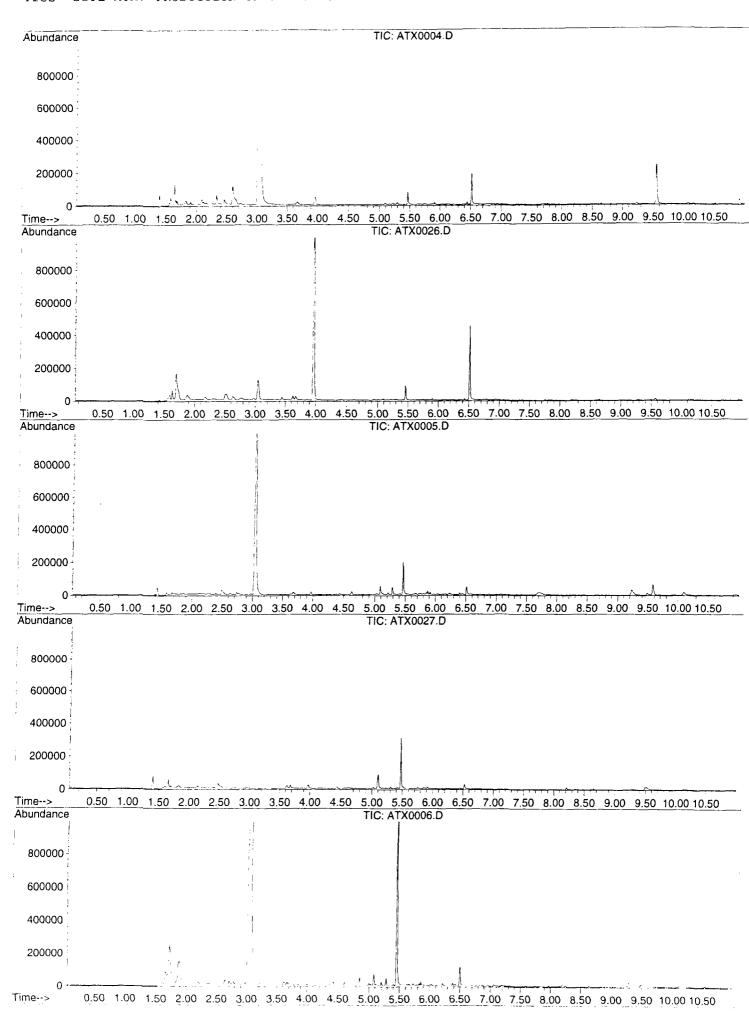


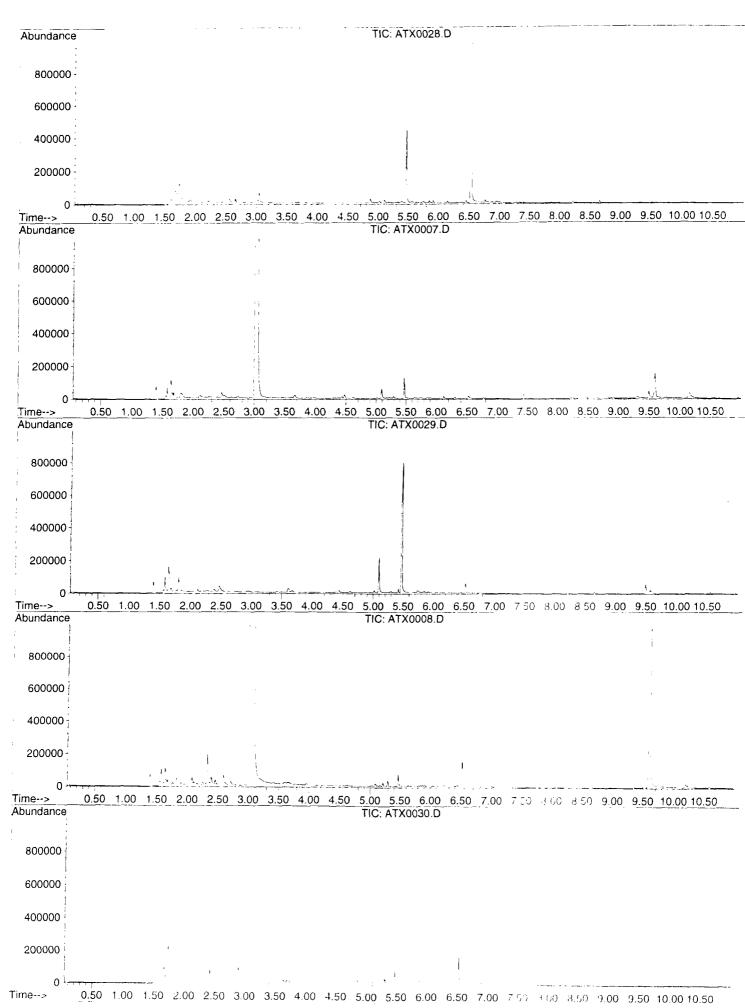


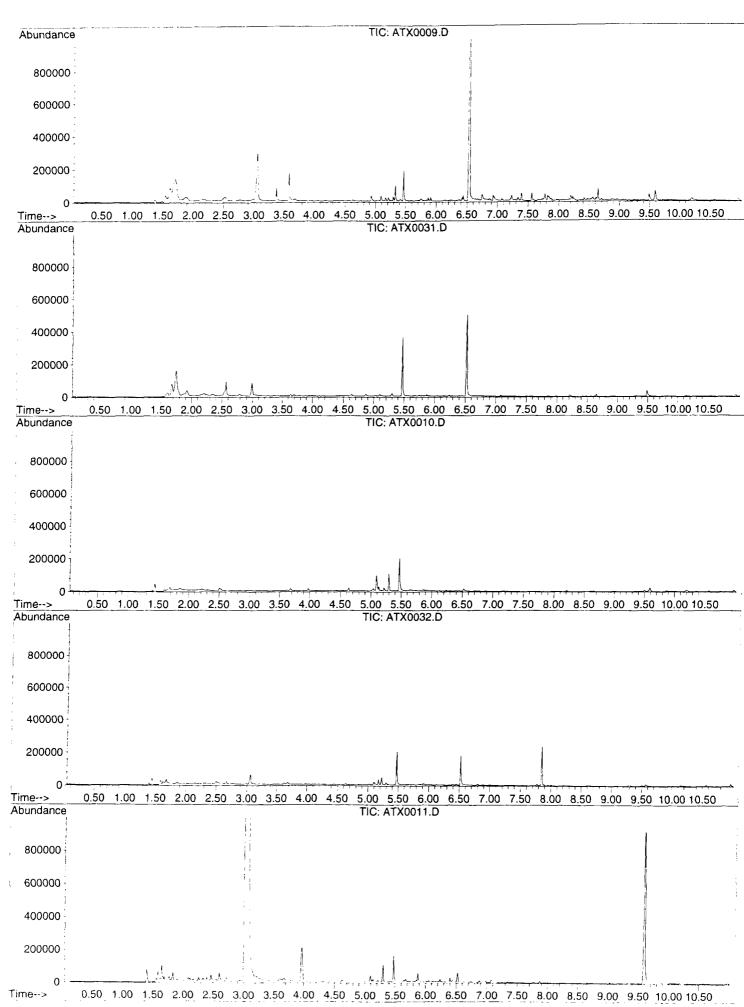


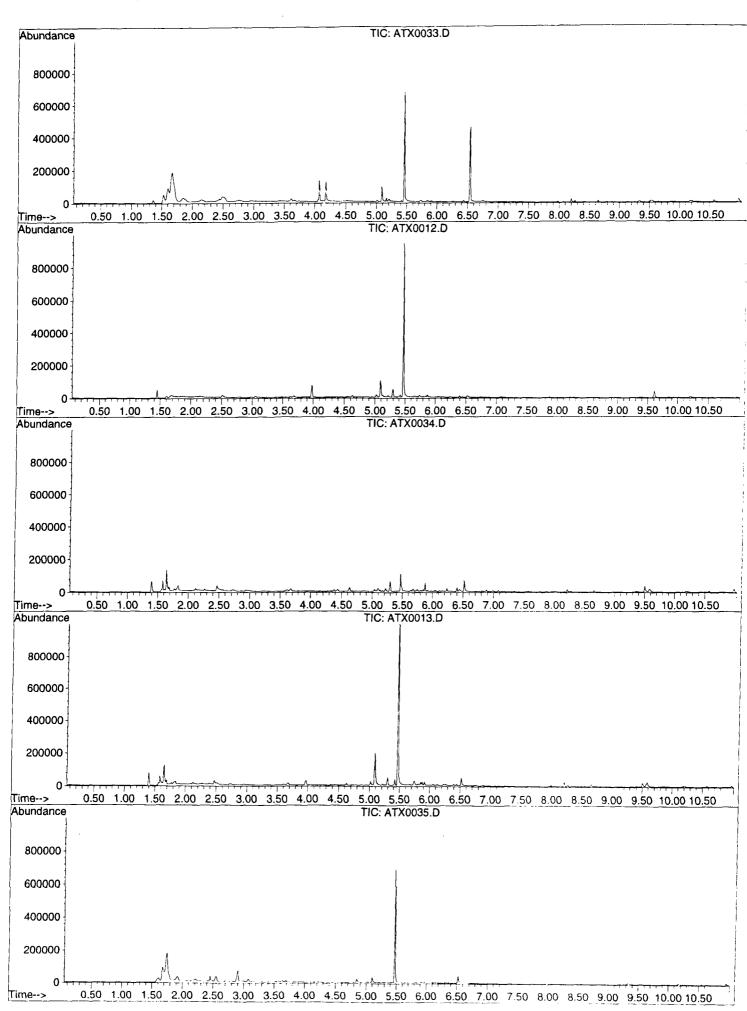


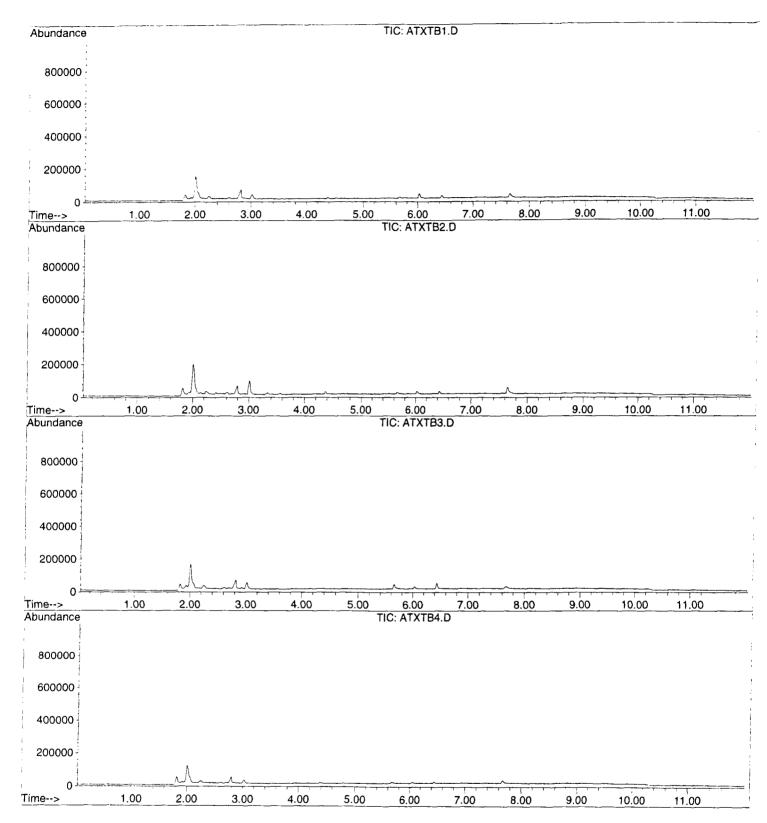


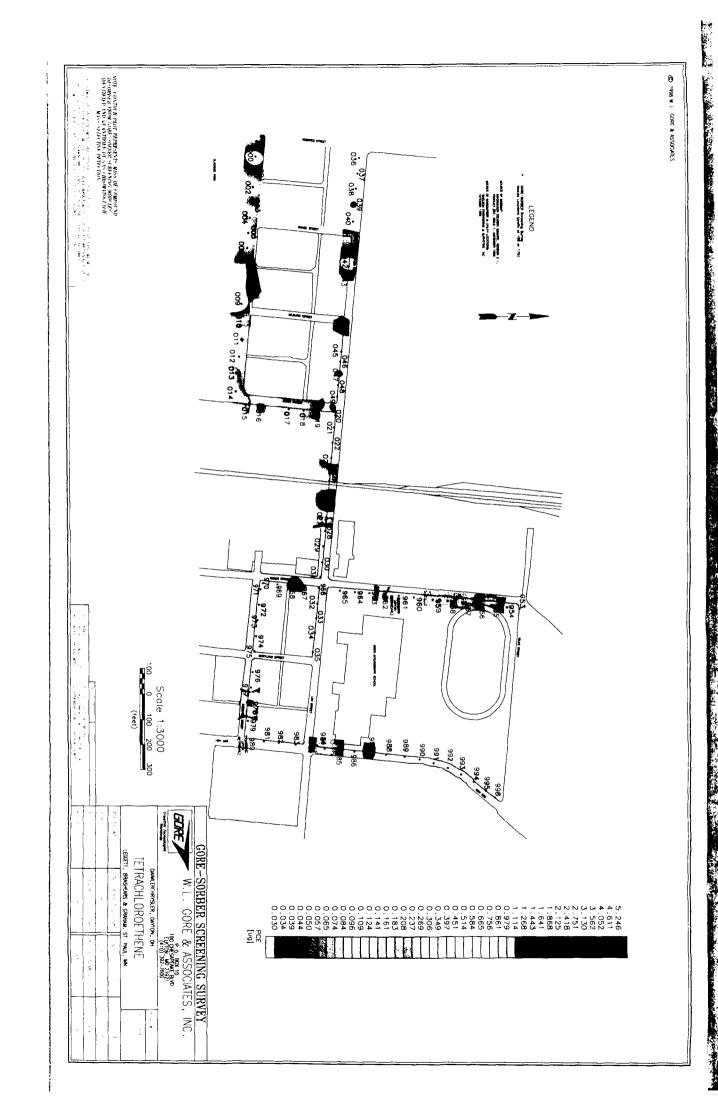


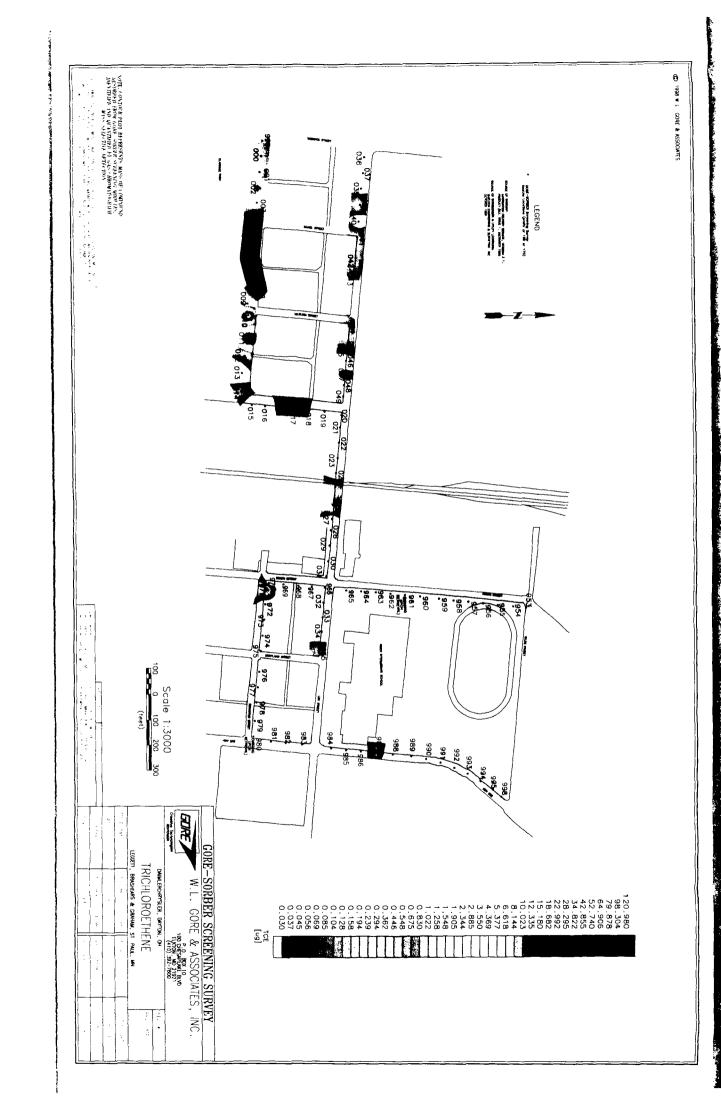


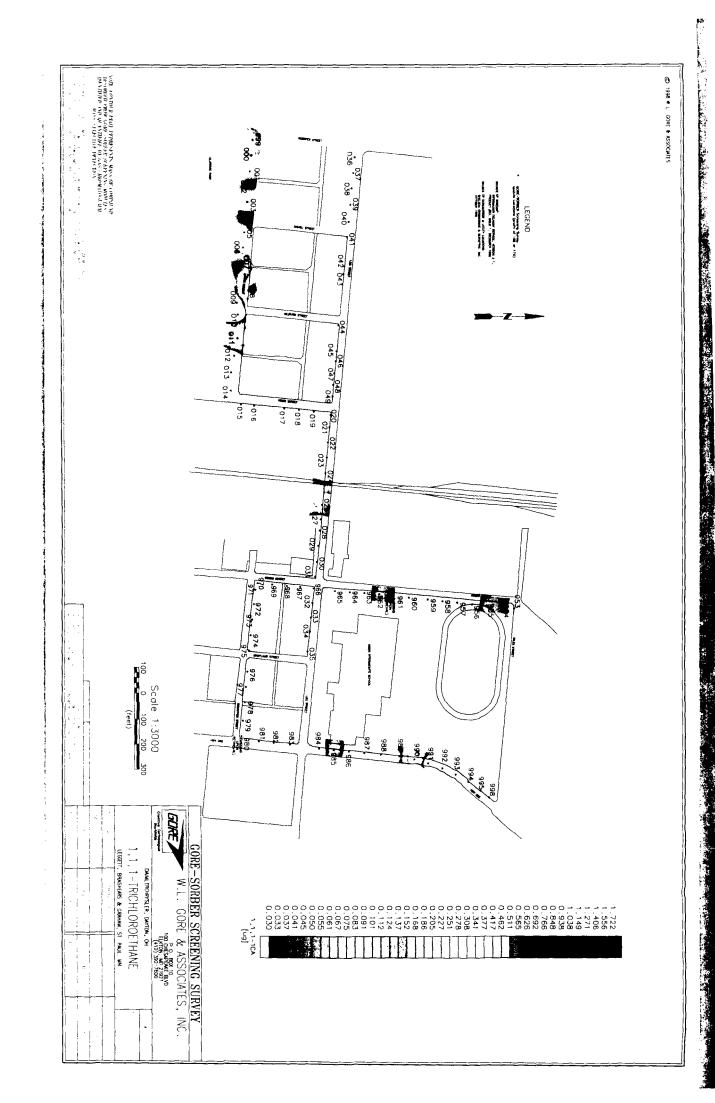












GORE-SORBER® Screening Survey Final Report

DaimlerChrysler Dayton, OH

January 5, 1999

PHASE II WORK PLAN ADDENDUM SOIL VAPOR EXTRACTION SYSTEM DESIGN FOR BEHR VOC PLUME SITE DAYTON, OHIO

Prepared by:

Chrysler LLC 800 Chrysler Drive Auburn Hills, MI 48326

Prepared For:

U.S. EPA Region 5 26 West Martin Luther King Drive Cincinnati, OH 45268

March 3, 2008

TABLE OF CONTENTS

1. SITE DESCRIPTION	1
2. SVE SYSTEM DESIGN	2
2.1 SVE CONCEPT 2.2 SOIL VAPOR EXTRACTION (SVE) SYSTEM 2.2.1 Overview of SVE System 2.2.2 Installation Subcontractors 2.2.3 SVE Well Installations 2.2.4 SVE System Piping 2.2.5 Extraction System 2.2.6 System Enclosure 2.2.7 Mechanical 2.2.8 SVE System Start-up 2.2.9 Emissions Treatment 2.2.10 SVE System Operation and Maintenance	.2 . 4 . 4 . 5 . 5 . 6 . 6 . 7
APPENDIX A	
Figure 1: Site Location Figure 2: Proposed Extent of SVE System Figure 3: Typical SVE Well Figure 4: Process and Instrumentation Diagram Figure 5: SVE Treatment System Schematic Figure 6: SVE Piping Trench Detail Figure 7: SVE Well Locations	

1. Site Description

Chrysler LLC (Chrysler), formerly known as DaimlerChrysler Corporation (DCC), previously prepared a Phase II Work Plan for Indoor Air Sampling, Delineation, and Mitigation to determine if trichloroethylene (TCE) vapors were migrating into properties proximate to the Behr Dayton Thermal Products Facility located at 1600 Webster Street in Dayton, Ohio (Behr-Dayton facility). This Work Plan has been prepared as an addendum to the Phase II Work Plan. This addendum has been prepared to present the proposed layout of a soil vapor extraction (SVE) system at a portion of the "Site", defined in the AOC as the area underlain by the undefined groundwater contamination plume originating from the Behr-Dayton facility. This addendum will address the design considerations for the SVE system; for other sections of the Work Plan, please refer to the approved Phase II Work Plan. The area of the Site currently proposed for the SVE system is the residential/commercial area bounded by Leo Street to the North, Milburn Street to the East, Daniel Street to the West and Lamar Street to the South. The Site location is shown in Figure 1.

This document presents the proposed preliminary Soil Vapor Extraction (SVE) system design for the Site.

2. SVE System Design

This system design has been prepared for installation of a Soil Vapor Extraction System for the Behr VOC Plume Site, herein referred to as the SVE System. The SVE System will enhance the TCE vapor mitigation as part of the indoor air removal action within the area of the site bounded by Leo Street to the North, Milburn Street to the East, Daniel Street to the West and Lamar Street to the South. The SVE System is designed to focus on the properties where soil gas concentrations have not been reduced by the sub-slab depressurization system to levels required in the AOC.

2.1 SVE Concept

The proposed conceptual design consists of the following features:

- Installation of Soil Vapor Extraction (SVE) points throughout areas where soil contamination is likely present, based on existing data from the residences; and using the actual radius of vacuum influence (R_I) measured during the SVE pilot test conducted at the Behr Plant in 2002.
- Installation of a trailer mounted SVE treatment system on the South side of the AMVETS located at 1016 Leo Street or other location deemed to be appropriate and accommodated by the relevant property owner(s).

SVE is an in-situ unsaturated (vadose) zone soil remediation technology in which a vacuum is applied to the subsurface soil to induce the controlled flow of air and remove volatile contaminants from the soil. The gas leaving the soil may be treated to recover or destroy the contaminants, depending on emission levels and local and Ohio EPA air discharge regulations. The SVE system for the Site will be designed to focus on hot spots of soil and soil gas contamination identified in the unsaturated zone.

The expected area of influence and the six target properties with vapor intrusion concerns within the project area are shown on Figure 2.

2.2 Soil Vapor Extraction (SVE) System

2.2.1 Overview of SVE System

The strategy for the SVE system is to remove TCE vapors from potential off-site contaminant source areas, and reduce soil gas concentrations at the properties

adjacent to the Behr VOC Plume Site SVE System. The system will be designed to focus on potential vadose zone soil contamination identified during soil gas sampling activities. The contaminant of concern that the SVE is intended to treat is trichloroethylene (TCE). The preliminary SVE system design consists of a series of eleven (11) vertical soil vapor extraction well points installed throughout the contaminant source area, SVE distribution piping, a treatment shed or trailer housing the equipment, and off-gas treatment, as warranted. Extracted vapors will be piped from the SVE wells to the treatment shed or trailer through subsurface polyvinyl chloride (PVC) piping. Based on the anticipated contaminant removal rates and airflow rates, off-gas treatment will be performed, at least during the initial phases of treatment. During startup, the off-gas treatment technology will consist of granular activated carbon (GAC) vessels. Following startup activities, off-gas treatment will be evaluated, and revised or eliminated, as appropriate. Removal of off-gas treatment may occur if measured discharge concentrations are below the State of Ohio de minimus limits, as documented in Ohio Administrative Code 3745-15-05. In addition, removal of offgas treatment will not occur unless approved by the U.S. EPA On-Scene Coordinator (OSC).

Based on the SVE pilot test conducted at the Behr Plant in 2002, the main components of the system have been identified as follows:

SVE Process Equipment Shed

- Two Regenerative or Rotary lobe Positive Displacement Blowers (300 cfm capacity each)
- Two (2) Vapor Phase Activated Carbon vessels arranged in series filled with virgin grade (4X10) granular activated carbon
- Heat exchanger, if necessary
- Motor starters
- Inlet air and particulate filters, inlet silencers (if warranted) and outlet silencers
- Inlet dilution and vacuum relief valves
- Air/water separator with low, high, and high-high level switches
- Condensate storage tank with high level switch
- Condensate transfer pump
- Hour meter, pressure gauges and sample ports
- Inlet manifold including flow control valves, sample ports, rotometers, vacuum gauges and vacuum relief valves
- Temperature sensors on blower and heat exchanger discharge with high temperature shut down switches
- Pressure relief valves on blower discharge

- Control panel completely wired to system components
- Sound dampening panels, if necessary

The anticipated extent of the SVE System based on current data is shown on **Figure 2**. An example of a typical SVE well is shown on **Figure 3**. A schematic of the SVE process and instrumentation is included in **Figure 4**. The SVE system layout is shown in **Figure 5**. An example of typical SVE trench detail is shown on **Figure 6**. Proposed SVE well locations and bank piping runs are shown on **Figure 7**.

2.2.2 Installation Subcontractors

As a part of the system installation, Earth Tech will subcontract the installation of certain portions of the system. Currently, Earth Tech plans to utilize subcontractors for the following activities:

- SVE System trenching and piping installation
- Drilling and installation of SVE wells
- Electrical service installation and connections to the SVE system

Prior to conducting any installation activities, a list of sub-contractors shall be submitted to the U.S. EPA OSC for approval.

2.2.3 SVE Well Installations

As shown in **Figure 7**, the proposed SVE treatment system will consist of eleven (11) extraction wells. Each well will be installed using direct push methods and constructed of 1.5-inch diameter PVC, to a depth of approximately twenty (20) feet below ground surface (bgs), based on historic groundwater levels. The wells will be constructed of schedule 40, flush threaded, PVC riser and schedule 40, factory slotted (0.010-inch slot size), 15-foot long PVC screens extending from 5-feet to 20-feet bgs. The annular space around the screen will be filled with a clean silica sand filter pack (Global No. 5) from the base of the well to approximately 4-feet below grade. A one and a half foot thick bentonite seal will be placed above the filter pack, from 4-feet to 2.5-feet below grade. The PVC riser shall be capped with a 1.5-inch by 1.5-inch by 2-inch tee, and finished with a 6-inch grout seal (see **Figure 3**). Each well head will have a 2-foot long 2-inch PVC stub out installed for connection to the system piping at a later date.

Well installations will be completed with eleven (11) 9-inch diameter, 13-inch deep Morrison Bros. 418X A-9 flush-mounted, bolt-down traffic rated manhole protective casings.

2.2.4 SVE System Piping

The SVE System piping will consist of 2-inch diameter Schedule 40 PVC pipe. All pipe connections will be glued. Individual wells will be piped back to the treatment trailer separately to allow for individual flow control at a central location. Piping runs will be contained within a 1.5-foot wide 2-foot deep trench with 6-inches of clean fill bedding (see **Figure 6**). System piping will be graded to allow any condensate to drain back to the well heads.

2.2.5 Extraction System

Extracted air from the manifold will be directed through an air/water separator to separate entrained moisture from the air stream. The separated water will periodically be transferred from the air/water separator to a storage vessel via a liquid transfer pump and periodically disposed of offsite. The air/water separator storage vessel liquid will be sampled and disposed of off-site at facility approved by the U.S. EPA OSC. The components of the extraction system are illustrated in **Figure 5**. Each well will be operated separately allowing the flow and vacuum to be balanced for the most effective treatment scenario.

Two (2) regenerative or positive displacement rotary lobe blowers will provide airflow and vacuum for the SVE well banks. The blowers will be designed to provide 300 cubic feet per minute (cfm) of airflow each. The inlet side of the blower system will be equipped with vacuum relief valves to protect the blowers in the event of a line blockage, an air filter to remove any particulates in the make-up air, vacuum gauges and rotometers.

The discharge side of each blower will be equipped with silencers for noise reduction and a heat exchanger, if necessary, to reduce the temperature of the discharge air. Inlet silencers may also be utilized for additional noise reduction. The discharge air will then be passed through granular activated carbon, during startup activities, to remove contaminants before discharge to the atmosphere.

2.2.6 System Enclosure

The system enclosure will consist of a custom constructed trailer or shed. The trailer or shed will be secured with a lockable door, and will include sound dampening as necessary. If a trailer is used, the trailer will include skirting to enclose the bottom of the trailer.

Prior to startup of the system, existing ambient noise levels will be measured. Sound levels will be monitored following startup activities, and improvements to the noise dampening will be conducted if found to exist above ambient levels at the property line.

2.2.7 Mechanical

The trailer will be equipped with a louvered exhaust fan that will turn on automatically and exhaust warm air from the trailer when the temperature in the trailer reaches a set point. The trailer will also be equipped with a heater to prevent freezing during winter months.

2.2.8 SVE System Start-up

During the system start-up, each extraction well point will be balanced and individual well points will be monitored with a photo-ionization detector (PID) at regular intervals to determine relative soil gas concentrations. The PID will be calibrated and appropriate response factor used in accordance with manufacturer's recommendations to ensure accurate readings. Following system balancing, individual well point samples will be collected to estimate subsurface concentrations. The radius of influence of each well will also be confirmed during start-up through installation of vacuum monitoring points around select SVE wells.

Vacuum monitoring points (VMPs) will be installed to assess the radius of influence (R_I) from select extraction wells. Given the relative homogeneity of the soils, the R_I measured during VMP monitoring is expected to be representative for of the R_I at all extraction wells. Each VMP will be constructed as follows: 1inch inner diameter (ID) PVC wells with 2-foot long screens (10-slot) set to a depth of approximately 10-foot below grade (screened from 8-feet bgs to 10-feet bgs). A clean well sand pack will be placed surrounding the screen up to 1-foot above the screen. A minimum 1-foot bentonite seal will be placed above the sand pack and hydrated to seal the annular space, and the remaining annular space will be filled with bentonite grout. The VMPs will be completed with a PVC end cap, a flush-mount manhole, and a 2-ft x 2-ft concrete pad. VMPs will be installed at various distances from select SVE wells so that a minimum of 4 VMPs exhibit an induced vacuum. Since the induced vacuum in monitoring points varies exponentially with distance from the extraction well, the radius of influence (R_I) at distances beyond these monitoring points can be extrapolated from the data from the VMPs that exhibit an induced vacuum. .A differential pressure gauge (e.g. Magnehelic® gauge) will be used to measure the induced vacuum (or R_I). The R_I will be defined as the point at which induced vacuum is 0.01 inches of water.

At completion of the start-up phase, the system will be optimized for contaminant removal.

The emission requirements for full-scale operation will also be evaluated at the completion of the start-up phase. The system emission rates established during start-up and the decline in removal rates over time will be considered when recommending the most cost effective emission control system.

2.2.9 Emissions Treatment

The Ohio Administrative Code (OAC) rule 3745-31-03 (A)(2) exempts the installation of a new air contaminant source for purposes of federal cleanup activities from the requirement to obtain a permit to install, where such activities meet all applicable air pollution emission limits and policies. The objective of emission treatment is to minimize the emissions to the ambient air by operating the SVE system in accordance with the OAC rule 3745-31-03 (A)(4)(e). As such, emissions control will include granular activated carbon vessels until extracted vapor levels can be discharged to the atmosphere in accordance with the state and local de minimus discharge levels of ten pounds of volatile organic compounds (VOCs) per day and one ton per year of hazardous air pollutants (HAPs) as specified in OAC rule 3745-15-05. TCE is a HAP, and current worst-case emissions estimate from the proposed SVE system is 3.6 TPY (67 ppmv @ 600 cfm).

Following startup of the system, two granular activated carbon vessels will be arranged in series to treat all collected vapors. Vapor samples will be collected from the extracted vapor stream prior to the first vessel, after the first vessel, and after the second vessel (the final discharge point). The collected samples will be used to monitor mass of contaminant removed by the SVE system, breakthrough of the primary carbon vessel, and final contaminant emission rates.

Vapor sampling will be conducted on the following schedule:

- Baseline sampling at system startup when PID readings peak
- 24-hours following system startup
- 1-week following system startup
- Weekly, thereafter until OSC approves reduced sampling schedule

Vapor sample results will be submitted to U.S. EPA and the Regional Air Pollution Control Agency (RAPCA Andy Roth) on a weekly basis.

Estimated time of breakthrough may be established on estimated inlet concentrations and manufacturer's recommendations. Breakthrough will be identified when weekly monitoring of outlet concentrations increases markedly from constant-outlet concentration performance of the system or outlet concentrations exceed 20 ppmv, whichever comes first. At the time of identified

carbon breakthrough, SVE system shall be shut down, carbon vessel #1 shall be removed from service and disposed properly, carbon vessel #2 shall be moved up to carbon vessel #1 service, and a new carbon vessel shall be installed as carbon vessel #2.

In the event that the vapor sampling indicates contaminant discharge levels prior to off-gas treatment are consistently less than the allowable de minimus discharge levels (approximately 20 ppmv @ 600 cfm), removal of the carbon treatment will be evaluated. Adequate number of samples (10-12) shall be collected to facilitate a supportable conclusion. If carbon treatment is removed, vapor samples will continue to be collected weekly to calculate mass of contaminant removed by the SVE system, and to confirm contaminant discharge levels.

2.2.10 SVE System Operation and Maintenance


The system will be installed to operate continuously, and will include an autodialer which will contact operation and maintenance personnel in the event of system shutdown. The operation and maintenance of the system will include monitoring air discharges and extraction flow rates, and balancing and tuning of the system based on sample results, field measurements, and an on-going evaluation of the contaminant distribution and concentrations. Monitoring of the system will allow the operator to continue to maximize the remediation by adjusting individual wells. The decrease in concentrations over time will determine the approximate location of persistent hot spots and allow the focus of more intense SVE efforts in these areas. Emission test results will be tracked and documented for regulatory compliance. Operation and maintenance will also include routine maintenance of the mechanical system (blowers, transfer pumps, etc.) as recommended by the equipment manufacturers. Monitoring of vacuum influence points in adjacent basements will also allow us to maximize the vapor mitigation benefit by focusing the vacuum and flow beneath the footprint of buildings.

Sampling at the adjacent properties currently included in the Phase I and Phase II Work Plans will continue as required under the existing Work Plans. The SVE system will operate continuously until sampling results indicate the beneficial return from operating the system have ceased, at which time the USEPA OSC will be petitioned for approval to shutdown the system. Following shutdown of the SVE system, quarterly monitoring (4 continuous quarters) of sub-slab and indoor air sampling at the six target properties will be conducted to confirm indoor air levels remain below the screening level. Contacts for operation and maintenance of the SVE System are as follows:

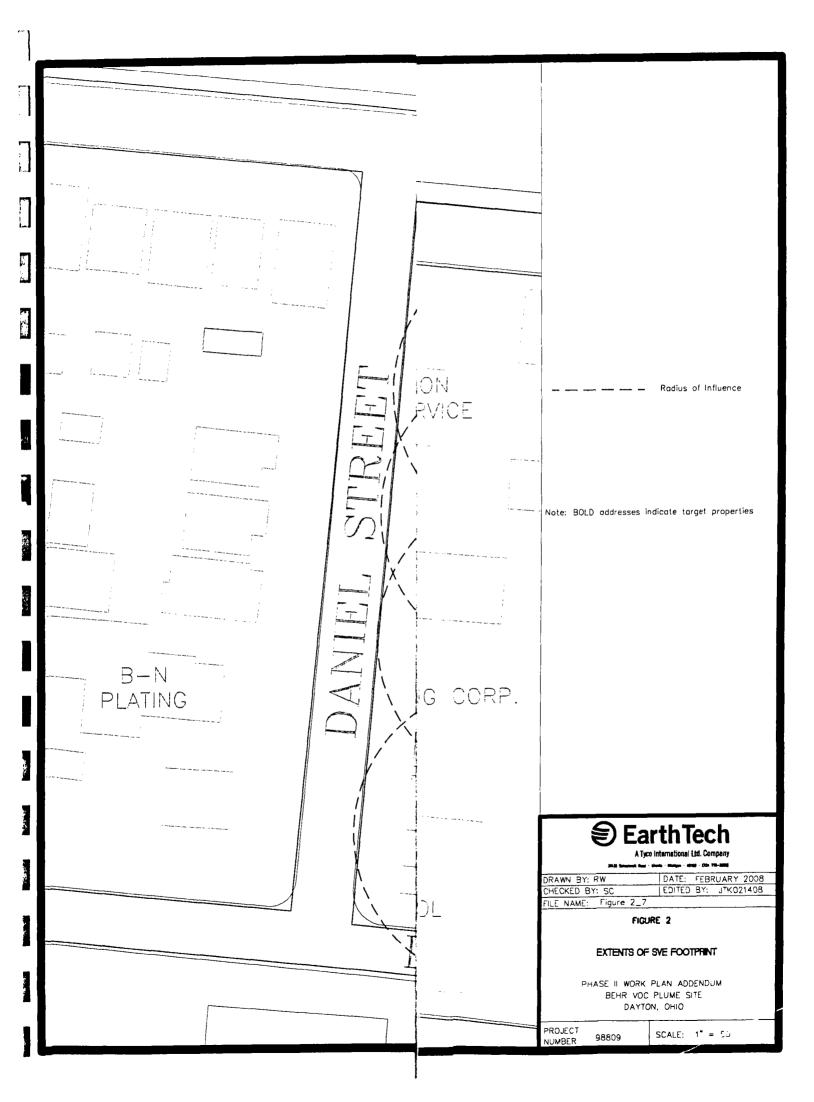
Chrysler, LLC BEHR VOC Plume Site Phase II Work Plan Addendum – SVE System Design

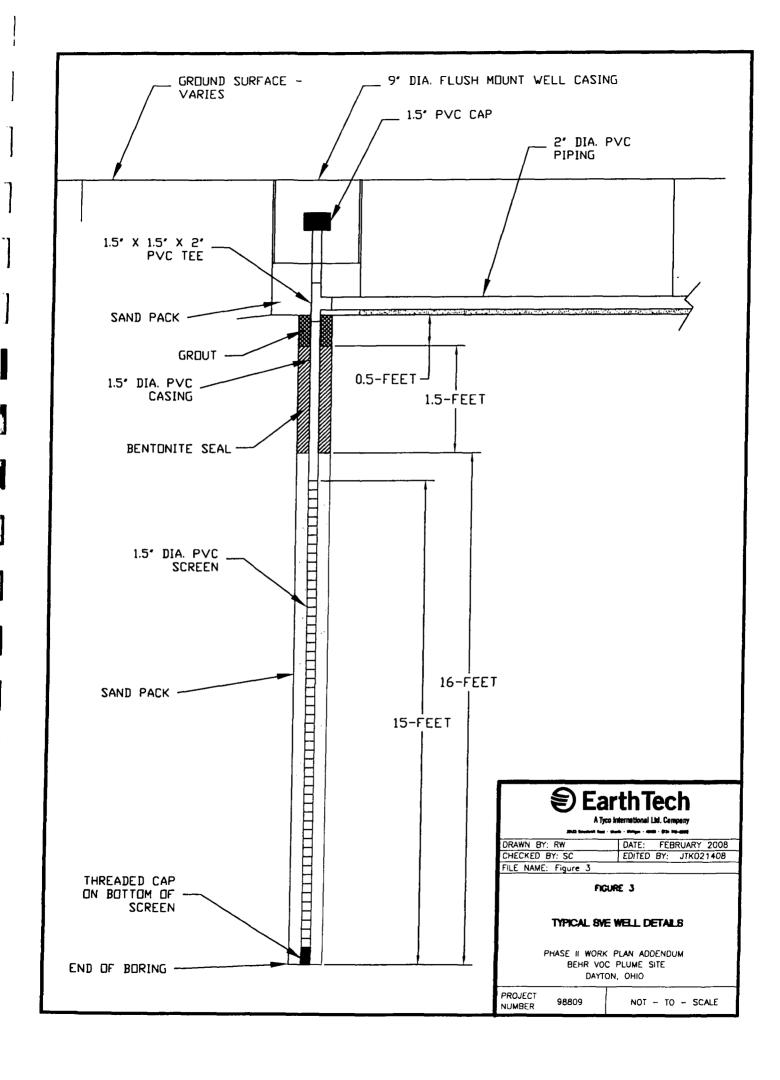
Al Johnston,	Chrysler Program Manager,	248-576-7357
Gary Stanczuk,	Chrysler Project Manager,	248-576-7365
Justin Kelley,	Environmental Contractor,	734-779-2864

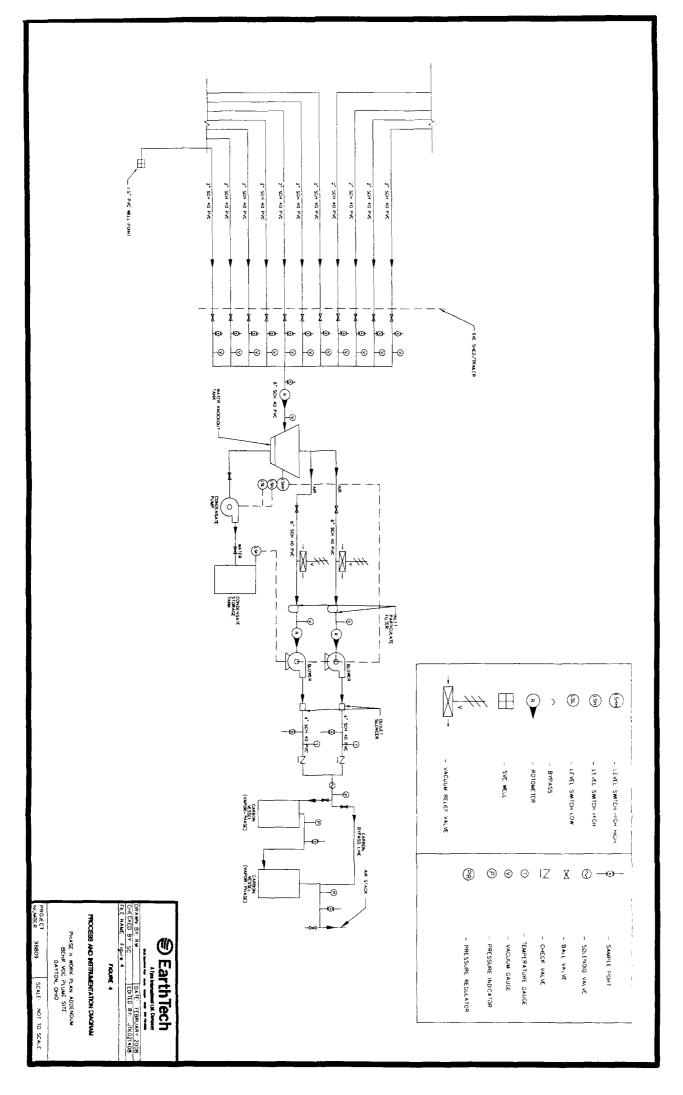
APPENDIX A - FIGURES

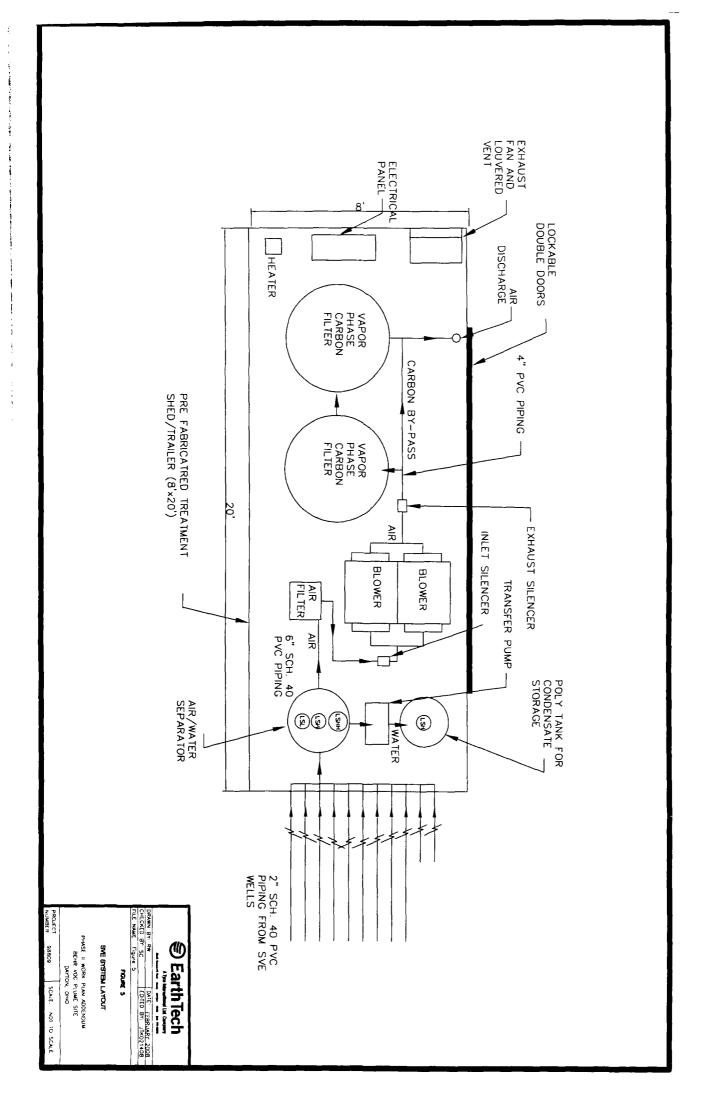
USGS 01 JUL 1992, DAYTON, OHIO, UNITED STATES

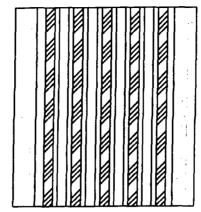
A Tyco International Ltd. Company

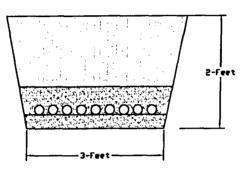

36133 Schoolcraft Road - Livenie - Michigan - 48150 (734 779 - 2800)

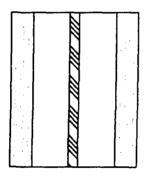

FIGURE 1 SITE LOCATION

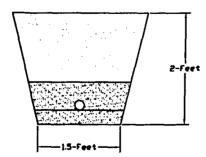

BEHR DAYTON THERMAL DAYTON, OHIO


FEBRUARY 2008


63787






TRENCH DETAILS NORTH TRENCH - PLAN VIEW

TRENCH DETAILS
NORTH TRENCH - SECTION VIEW

THENCH DETAILS
TIE-IN TRENCH - PLAN VIEW

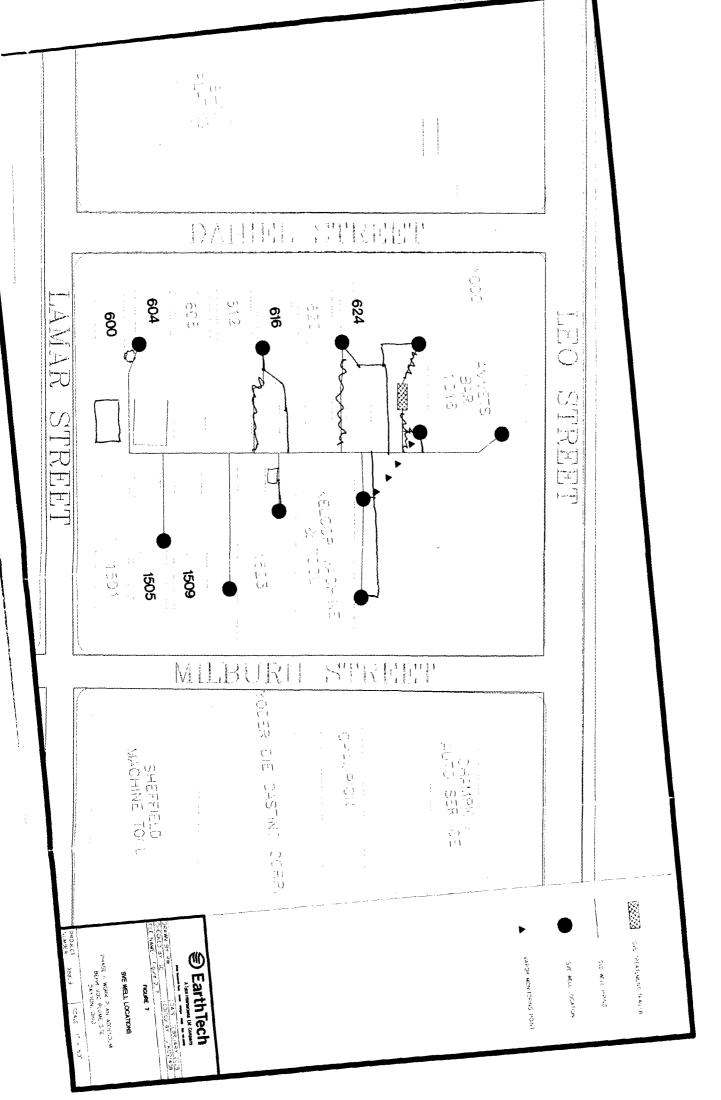
TRENCH DETAILS
TIE-IN TRENCH - SECTION VIEW

A Type Intermetional Ltd. Company no based has a state a stage a street decreasing

DRAWN BY: RW DATE: FEBRUARY 2008
CHECKED BY: SC EDITED BY: JTK021408

FILE NAME: Figure 3

FIGURE 6


SVE TRENCH DETAILS

PHASE II WORK PLAN ADDENDUM BEHR VOC PLUME SITE DAYTON, OHIO

PROJECT NUMBER

98809

NOT - TO - SCALE

THE REPORT OF THE PARTY OF THE

REGIONAL AIR POLLUTION CONTROL AGENCY

Serving Clark, Darke, Greene, Miami, Montgomery & Preble Counties 451 W. Third Street, P.O. Box 972, Dayton, Ohio 45422-1280 Phone: (937) 225-4435 Fax: (937) 225-3486 Visit our Home Page at: http://www.rapca.org

JUL 31 1998

July 27, 1998

Ms. Kimberly Blomker Leggette, Brashears & Graham, Inc. 1210 West County Road E, Suite 700 Saint Paul, MN 55112

Re: PTI exemption for SVE system at Chrysler Dayton Thermal Systems (Facilit 0857040734)

Dear Ms. Blomker:

On July 23, 1998, you submitted a Permit to Install (PTI) exemption request for a soil vapor extraction (SVE) system at Chrysler Dayton Thermal Systems. Within the PTI exemption request, you indicate that actual emissions of volatile organic compounds (VOC) are less than 10 pounds per day after controls, a granular activated carbon bed. In addition, the letter indicated that the operation of the SVE system would be temporary, between 6 and 12 months.

Pursuant to Ohio Administrative Code (OAC) rule 3745-15-05(D), the SVE proposed in your July 23. 1998 letter is a "de minimis" air contaminant source; and therefore, does not require a PTI. In accordance with the aforementioned rule, the operator of the SVE is required to maintain records that adequately demonstrate that actual emissions of any regulated pollutant do not exceed 10 pounds per day (or 1 ton per year of any hazardous air pollutant).

In accordance with OAC rule 3745-15-05(E), all the following information. if applicable, shall be adequate to demonstrate that actual emissions do not exceed 10 pounds per day (or 1 ton per vear HAP):

- 1. A narrative description of how the emissions from the SVE were determined and maintained at or below the daily exemption level, and for emissions of HAP at or below the annual exemption level:
- 2. A description of the air pollution control equipment used on the SVE and a statement that the source is not capable of operating without the pollution control equipment functioning:
- 3. A copy of any report of the results of any emission test that was conducted

Hot work
Product

Ms. Blomker July 27, 1998 Page 2

بر به 🖈 🙀

following Ohio EPA approved methods;

- 4. A description of all production constraints required for the SVE to comply with the exemption level;
- 5. Records of actual operations that demonstrate that the daily and annual emissions from the SVE were maintained at or below the exemption level by the by the use of necessary production constraints of pollution control equipment;
- 6. A list of similar emissions units at Chrysler Dayton Thermal Products, and a statement for each source of the annual potential emissions;
- 7. A summation of the total emissions from each exempt or similar emissions unit, a summation of stated potential emissions from all emissions units identified in (6.), and a certification under oath that the applicable exemption levels were compliant.

Thank you for your cooperation with these matters. If you have any questions or concerns, please feel free to contact me at (937)225-5923.

Sincerely.

James S. Pellegrino Jr.

Air Pollution Control Specialist

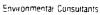
James A Ollegono for

Abatement Unit

c: Joe Whitlock, Chrysler file

saved: h:\jim\svesys\chrysler.wpd

SITE INVESTIGATION REPORT CHRYSLER CORPORATION DAYTON THERMAL PRODUCTS PLANT 1600 WEBSTER STREET DAYTON, OHIO 45404


Volume II of III Figures, Attachments, Drawings

Prepared For

Chrysler Corporation 800 Chrysler Drive CIMS 482-00-51 Auburn Hills, Michigan 48326-2757

Prepared By

Clean Tech 2700 Capitol Trail Newark, DE 19711 (302) 999-0924 Not work

2700 Capitol Trail
Newark, DE 19711
302-999-0924
FAX: 302-999-0925

September 14, 1995

Mr. Curtis Chapman Chrysler Corporation 800 Chrysler Drive CIMS 482-00-51 Auburn Hills, MI 48326-2757

RE: Finalized Site Investigation Report

Chrysler Corporation Dayton Thermal Products Plant

Dayton, Ohio

Dear Mr. Chapman:

Enclosed please find the three volume finalized document <u>Site Investigation</u>, <u>Chrysler Corporation Dayton Thermal Products Plant</u>, <u>Dayton Ohio</u>. This submittal includes your review comments and requested report revisions. Comments received from Mr. Doug Orf are incorporated in this final submittal. This document has been forwarded to Mr. Orf per your request.

If you have any questions, please contact Clean Tech at (302) 999-0924.

Sincerely,

Steven W. Newsom, P.G.

Principal Geologist

CLEAN TECH

e:\usr-data\chrysler\corres.\sub995cc.doc

Sincerely,

Deborah A. Buniski, P.E.

President

CLEAN TECH

CLEANTECH

2700 Capitol Trail

Newark, DE 19711 302•999•0924

FAX: 302+999+0925

September 14, 1995

Mr. Douglas J. Orf Chrysler Corporation Dayton Thermal Products Plant 1600 Webster Street Dayton, Ohio 45404

RE: Finalized Site Investigation Report

Chrysler Corporation Dayton Thermal Products Plant

Dayton, Ohio

Dear Mr. Orf:

Enclosed please find the three volume finalized document <u>Site Investigation</u>, <u>Chrysler Corporation Dayton Thermal Products Plant</u>, <u>Dayton Ohio</u>. This submittal includes comments and requested report revisions as received from you and Mr. Curtis Chapman. This document has been forwarded to Mr. Chapman.

If you have any questions, please contact Clean Tech at (302) 999-0924.

Sincerely,

Steven W. Newsom, P.G.

Principal Geologist

CLEAN TECH

Sincerely,

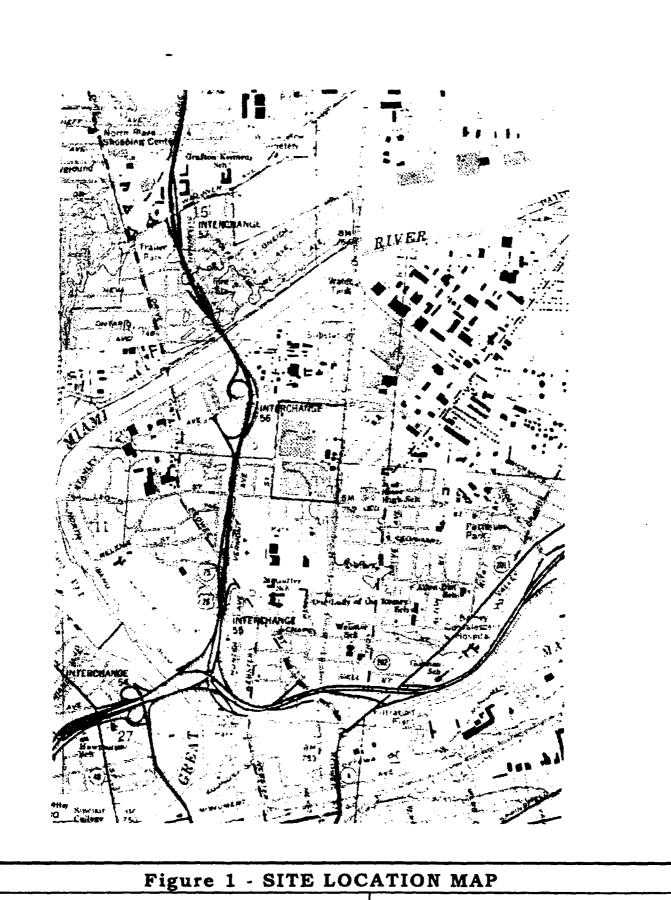
Deborah A. Buniski, P.E.

President

CLEAN TECH

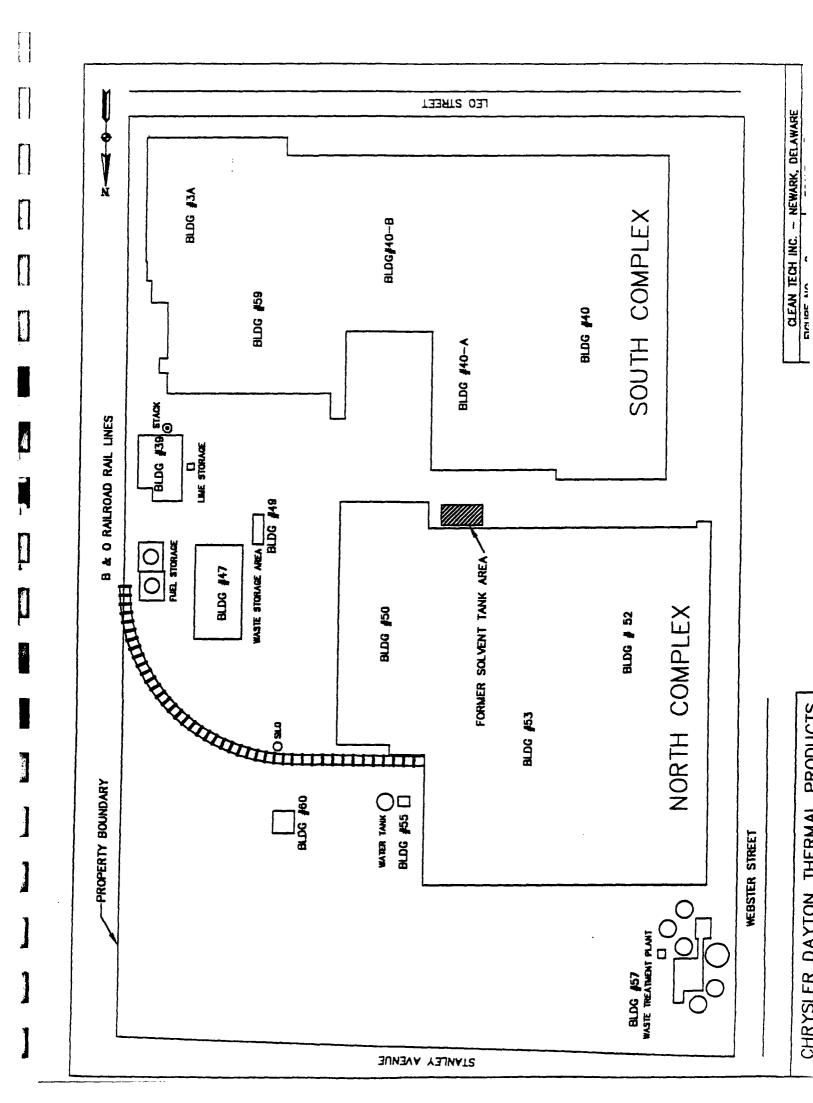
e:\usr-data\chrysler\corres.\sub995do.doc

Volume II of III Figures, Attachments, Drawings Table of Contents

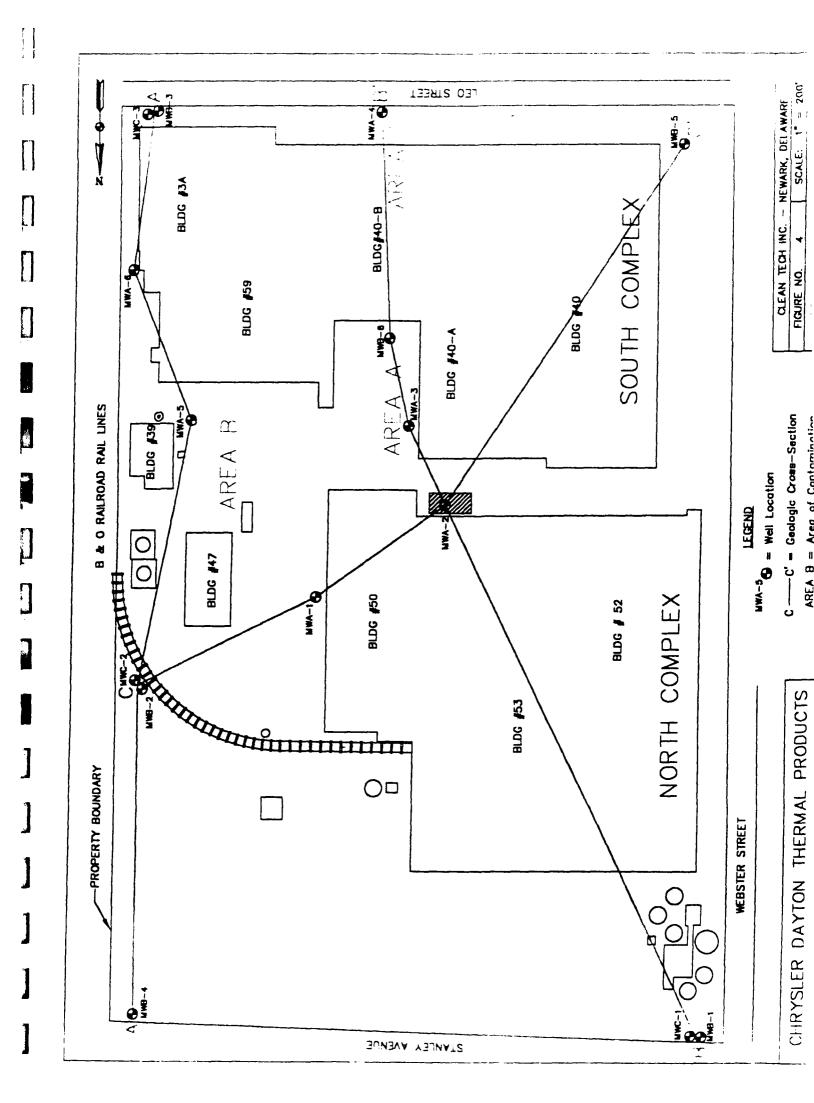

Figures	
1	Site Location Map
2	Map of Facility
3	Map of Facility Showing Areas A, B, C
4	Locations of Geologic Cross-Sections
Attachments	.
A	Aerial Photographs
В	Soil Vapor Survey Sample Locations
С	Soil Vapor Survey Results
D	General Procedures for Drilling and Soil Sampling
E	Soil Boring Logs
G	Quality Control Procedures for Soil Samples
I	Groundwater Monitoring Well Logs
L	Groundwater Sample Collection Procedures
0	Quality Control Procedures for Groundwater Samples
Drawings	
1	Site Plan
2	Soil Vapor Survey Sample Locations 1 - 48
3	Soil Vapor Plumes - Total VOCs - Shallow
4	Soil Vapor Plumes - Total VOCs - Deep
5	Soil Vapor Plumes - TCA - Shallow
6	Soil Vapor Plumes - TCA - Deep
7	Soil Vapor Plumes - PCE - Shallow
8	Soil Vapor Plumes - PCE - Deep
9	Soil Vapor Plumes - Vinyl Chloride - Shallow
10	Soil Vapor Plumes - Vinyl Chloride - Deep
11	Soil Boring Locations
12	Groundwater Monitoring Well Locations
13	Soil Sample Results - Total VOCs
14	Soil Sample Results - Tetrachloroethylene
15	Soil Sample Results - Trichloroethene
16	Round #1 Groundwater Results - Total VOCs
17	Round #1 Groundwater Results - Tetrachloroethylene
18	Round #1 Groundwater Results - Trichloroethene
19	Round #2 Groundwater Results - Total VOCs
20	Round #2 Groundwater Results - Tetrachloroethylene
21	Round #2 Groundwater Results - Trichloroethene

Volume II of III Continued Figures, Attachments, Drawings Table of Contents

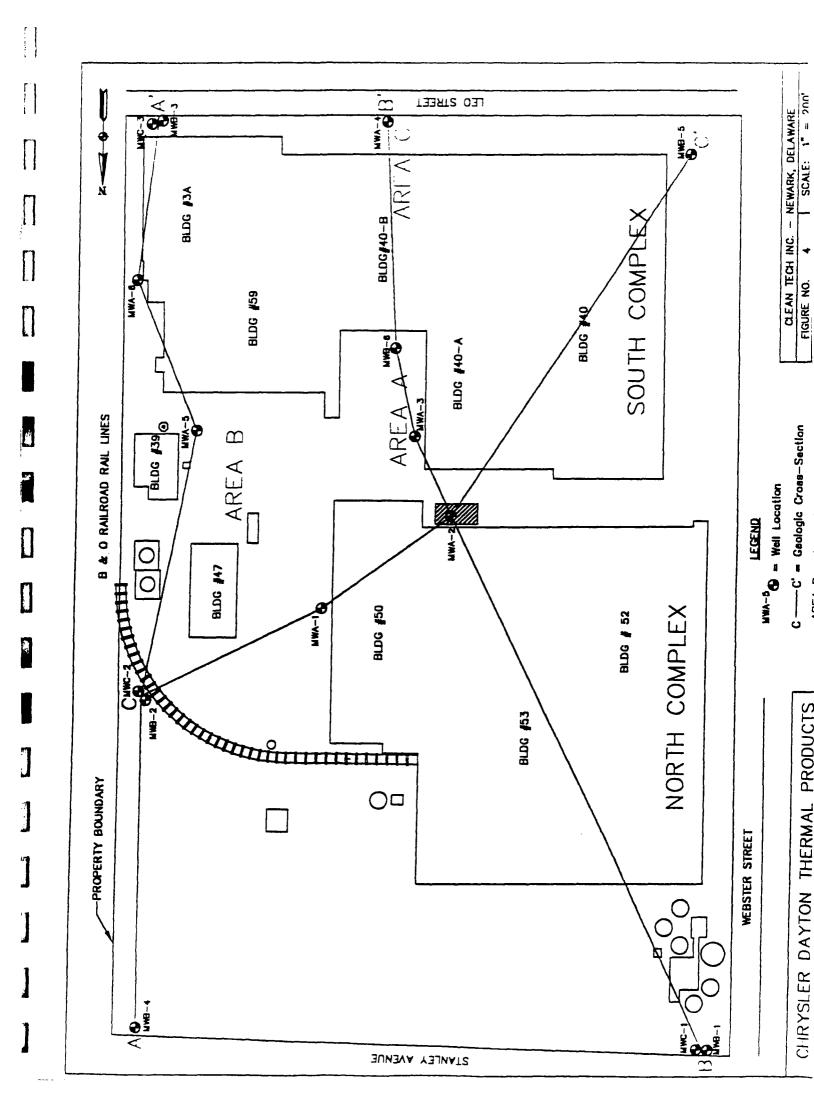
Drawings


22	Groundwater Elevation Unconfined Aquifer - December 1994
23	Groundwater Elevation Unconfined Aquifer - January 1995
24	Groundwater Elevation Unconfined Aquifer - February 1995
25	Geologic Cross-Section A-A'
26	Geologic Cross-Section B-B'
27	Geologic Cross-Section C-C'

Site Location Map
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404



CHRYSLER CORPORATION DAYTON THERMAL PRODUCTS

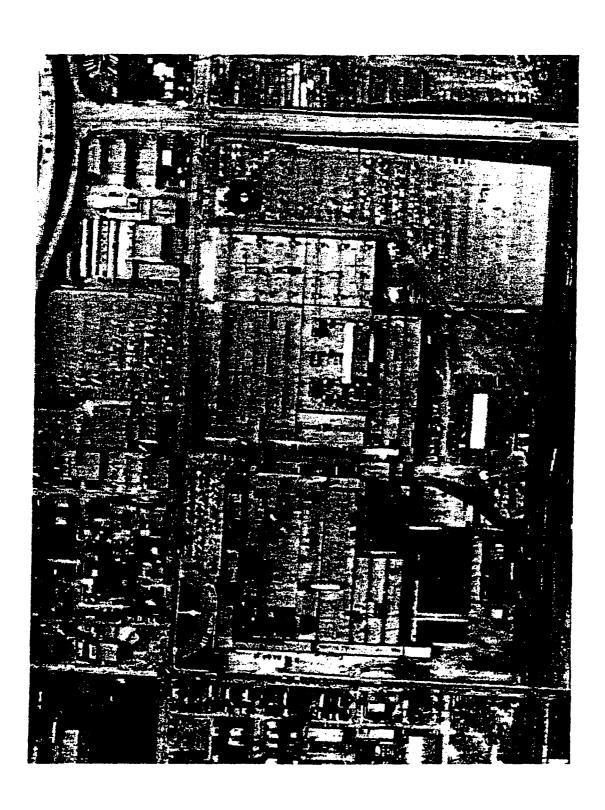

Map of Facility
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404

Map of Facility Showing Areas A, B, C
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404

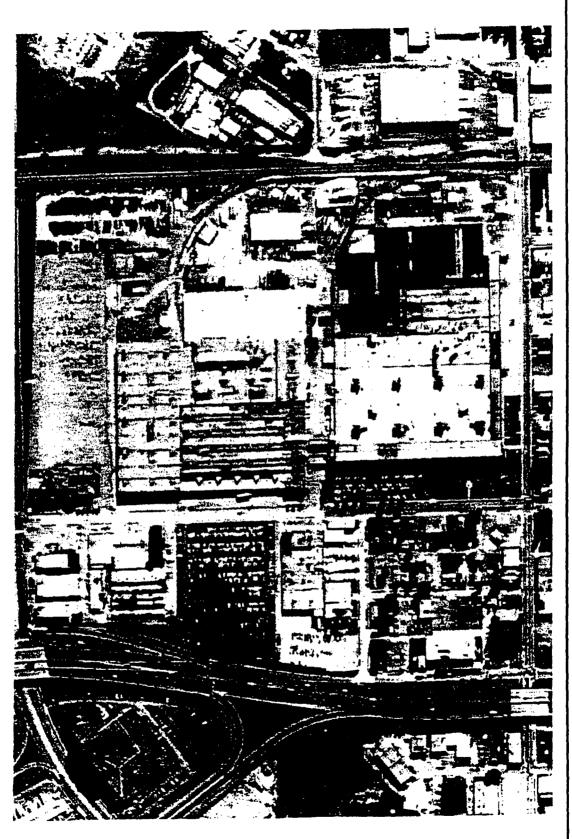
Locations of Geologic Cross-Sections
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404

ATTACHMENT A

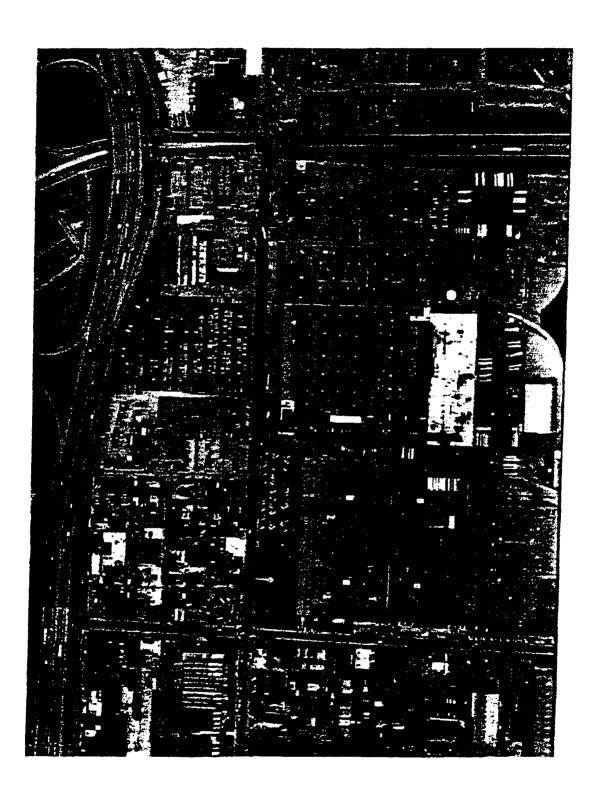
Aerial Photograph Series
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404


Aerial Photograph - 05-24-61

CHRYSLER CORPORATION
DAYTON THERMAL PRODUCTS


Aerial Photograph - 03-07-68

CHRYSLER CORPORATION
DAYTON THERMAL PRODUCTS


Aerial Photograph - 04-13-73

CHRYSLER CORPORATION
DAYTON THERMAL PRODUCTS

Aerial Photograph - 08-31-90

CHRYSLER CORPORATION DAYTON THERMAL PRODUCTS

Aerial Photograph - 04-25-94

CHRYSLER CORPORATION
DAYTON THERMAL PRODUCTS

ATTACHMENT B Soil Vapor Survey Sample Locations Chrysler Corporation Dayton Thermal Products Plant 1600 Webster Street Dayton, Ohio 45404

Sample Numbers	Sar	nnle	Nu	ımb	ers
----------------	-----	------	----	-----	-----

#1-10'-Blacktop

#2-20'-Blacktop

#3-10'-Blacktop

#4-Depth 10'-Blacktop

#5-Depth 30'-Possible misconnection of sample tip. Groundwater encountered at 30'-Blacktop

#6-Depth 30'-Resampled at 30'

#7-Depth 10'-Blacktop

#8--Depth 10'-Soil

#9-Depth 20'-Soil

#10--Depth 10'-Blacktop

#11-Depth 20'-Soil

#12-Depth 10'-Soil

#13-Depth 20'-Soil

#14--Depth 10'-Soil

#15--Depth 20'-Soil

#16-Depth 10'-Soil

#17-Depth 20'-Soil

#18-Depth 10'-Concrete

#19--Depth 20'-Concrete

Locations

LOCATION 1-Located in storage area near bldg.30-approx. 300' from Stanley Ave. fence & 6' from RR fence.

LOCATION 1--Located in storage area near bldg.30-approx. 300' from Stanley Ave. fence & 108' off RR fence.

<u>LOCATION 2</u>-Located in storage aea near bldg. 30-approx. 300' from Stanley Ave. fence & 6' from property fence of RR.

LOCATION 3-Located in storage area near bldg. 30-approx. 9' from RR fence and 5' from Stanley Ave. fence.

LOCATION 3—Located in storage area near bldg. bldg. 30-approx. 9' from RR fence and 5' from Stanley Ave. fence.

LOCATION 3—Located in storage area near bldg. 30-approx. 9' from RR fence and 5' from Stanley Ave. fence.

LOCATION 4—Located in tractor trailer storage area approx. 15' from fence on Stanley Ave.

<u>LOCATION 5</u>—Located near clean storage piles near bldg. 47 on north side of RR tracks.

LOCATION 5—Located near clean storage piles near bldg. 47 on north side of RR tracks.

<u>LOCATION 6</u>—Location near 47 near clean storage piles on south side of RR tracks.

LOCATION 6--Located near bidg. 47 near clean storage piles on south side of RR tracks.

LOCATION 7—Located near bldg. 47 near clean storage piles on south side of bend in RR tracks.

LOCATION 7—Located near bldg. 47 near clean storage piles on south side of bend in RR tracks.

LOCATION 8—Located near bldg 47 near clean storage piles on south side of RR tracks approx. 90' from tanks.

LOCATION &-Located near bldg 47 near clean storage piles on south side of RR tracks approx. 90' from tanks.

LOCATION 9—Located near bidg. 47 approx. 30' from clean storage piles.

<u>LOCATION 9</u>—Located near bldg. 47 approx. 30' from clean storage piles.

LOCATION 10-Located near end of RR siding near bldg. 50 on west side of driveway.

LOCATION 10-Located near end of RR siding near bldg. 50 on west side of driveway approx. 10' from north end & 60' from bldg. 50.

I

Sample	Numbers
--------	---------

#20-Depth 10'-Concrete

#21-Depth 20'- Concrete

#22-Depth 10'-Concrete

#23-Depth 20'-Concrete

#24--Depth 10'-Concrete

#25-Depth 20'-Concrete

#26-Depth 10'-Concrete

#27--Depth 20'-Concrete

#28-Depth 10'-Concrete

#29-Depth 20'-Concrete

#30-Depth 10'-Concrete

#31--Depth 20'-Concrete

#32-Depth 10'-Concrete

#33-Depth 20'-Concrete

#34--Depth 10'-Concrete

#35--Depth 20'-Concrete

#36-Depth 10' Concrete

#37--Depth 20'-Concrete

#38-Depth 10'-Concrete-Day 3

#39--Depth 20'-Concrete

Locations

LOCATION 11-Located near bldg. 50 on west side of driveway near boring location. Approx. 63' from edge of bldg. 50 & 135' from north end. LOCATION 11-Located near bldg. 50 on west side of driveway near boring location. Approx. 63' from edge of bldg. 50 & 135' from north end. LOCATION 12-Located near bidg. 50 on west side of driveway. Approx 280' from north end of bldg. and 63' from edge of bldg. LOCATION 12-Located near bidg. 50 on west side of driveway. Approx 280' from north end of bldg. and 63' from edge of bldg. LOCATION 13-Located off bldg. 50 approx. 36' off south end of bldg. 50 & 9' off east side bldg. LOCATION 13-Located off bldg. 50 approx. 36' off south end of bldg. 50 & 9' off east side bldg. LOCATION 14-Located near bldg. 47, approx. 10' off annex corner & 5' off bldg. LOCATION 14-Located near bldg. 47, approx. 10' off annex corner & 5' off bidg. LOCATION 15-Located off bldg. 47 behind annex bidg. Approx. 10' from rear of bidg. 49 & 25' from south side of no. 47. LOCATION 15-Located off bldg. 47 behind annex bidg. Approx. 10' from rear of bidg. 49 & 25' from south side of no. 47. LOCATION 16-Located near former trichlor tanks on south side of bldg. 50 and north side of

LOCATION 16—Located near former trichlor tanks on south side of bldg. 50 and north side of driveway.

LOCATION 17—Located on south side of bldg. 53 & on west side of trichlor tanks on north side of drive.

LOCATION 17—Located on south side of bldg. 53 & on west side of trichlor tanks on north side of drive.

LOCATION 18—Located on south side of bldg. 52 under conveyor bridge on north side of drive.

LOCATION 18—Located on south side of bldg. 52 under conveyor bridge on north side of drive.

LOCATION 19—Located on south side of drive.

LOCATION 19—Located on south side of drive near tanks halfway between samples 11 & 12.

LOCATION 19—Located on south side of drive near tanks halfway between samples 11 & 12.

LOCATION 20

LOCATION 20

Samp	le N	umt	ers
------	------	-----	-----

#40--Depth 10'-Concrete #41-Depth 20'-Blacktop #42-Depth 10'-Blacktop #43-Depth 20'-Blacktop #44-Depth 10'-Concrete #45-Depth 20'-Concrete #46-Depth 10'-Concrete #47-Depth 20'-Concrete #48-Depth 10'-Concrete #49-Depth 20'-Concrete #50-Depth 10'-Concrete #51-Depth 20'-Concrete #52-Depth 10'-Concrete #53-Depth 20'-Concrete #54-Depth 10'-Concrete #55-Depth 20'-Concrete #56-Depth 10'-Concrete #57-Depth 20'-Concrete #58-Depth T-Soil Biopile #59-Depth 7'-Soil Biopile #60-Depth 7'-Soil Biopile #61-Depth 10'-Blacktop

Locations

LOCATION 21-Located near the trichlor, tanks near former location #16. LOCATION 21-Located near the trichlor, tanks near former location #16. LOCATION 22-Located on south side of bldg. 40 on Leo Street. Located near entrance gate. LOCATION 22-Located on south side of bldg. 40 on Leo Street. Located near entrance gate. LOCATION 23-Located off Leo & Milburn Street. LOCATION 23-Located off Leo & Milburn Street. LOCATION 24-Located in the corner of the property near bldg. 3A LOCATION 24-Located in the corner of the property near bldg. 3A This sample was difficult to extract, possible tight clays in range of 18-20 ft. LOCATION 25-Located on north side of boiler house and waste storage area. LOCATION 25-Located on north side of boiler house and hazardous waste storage area. LOCATION 26-Located near hazardous waste storage area near bldg. 39. LOCATION 26-Located near hazardous waste storage area near bldg. 39. LOCATION 27-Located near bidg.'s 47 & 49 near waste storage area. LOCATION 27-Located near bldg.'s 47 & 49 near waste storage area. LOCATION 28-Located near bldg's 59 & 3A near property fence & RR tracks. LOCATION 28-Located near bldg's 59 & 3A near property fence & RR tracks. LOCATION 29-Located near bidg's 59 & 39 near property fence. LOCATION 29-Located near bldg's 59 & 39 near property fence. LOCATION 30-Located approx. 10' from toe power pole in the treament cell LOCATION 31-Located in angled end of biopile LOCATION 32-Located on biopile near plastic storage units. LOCATION 33-Located at NE corner of property by location 3 water thru out. LOCATION 33-Located at NE corner of property by location 3 water thru out.

LOCATION 34-Located near WWTP water at 20'

#62-Depth 20'-Blacktop

#63-Depth 10'-Blacktop

Sample	Numbers
--------	---------

Sample Numbers	
#64-Depth 16'-Blacktop	
#65-Depth 10'-Blacktop/Concrete	
#66-Depth 20'-Blacktop/Concrete	
#67-Depth 10'-Blacktop/Concrete	
#68-Depth 20'-Blacktop/Concrete	
#69-Depth 10'-Concrete	
#70-Depth 20'-Concrete	
#71-Depth 10'-Concrete	
#72-Depth 20'-Concrete	
#73-Depth 10'-Concrete	
#74-Depth 20'-Concrete	
#75-Depth 10'-Concrete	
#76-Depth 20'-Concrete	
#77-Depth 10'-Concrete	
#78-Depth 20'-Concrete	
#79-Depth 10'-Asphalt	
#80-Depth 20'-Asphalt-(difficult drilling 17'- 19')	
#81-Depth 10'-Concrete	
#82-Depth 20'-Concrete	
#83-Depth 10'-Concrete #84-Depth 20'-Concrete #85-Depth 10'-Concrete	

Locations
LOCATION 34-Located near WWTP water at 20'
LOCATION 35-Located in front of bldg 52, truck bay 7.
LOCATION 35—Located in front of bldg 52, truck bay 7.
LOCATION 36-Located in front of bldg. 40, near helipad.
LOCATION 36Located in front of bldg. 40, near helipad.
LOCATION 37—Located in bldg. 40B in rear coil dept.
LOCATION 37—Located in bldg. 40B in rear coil dept.
LOCATION 38Located in bldg. 40 near column 16
LOCATION 38—Located in bldg. 40 near column 16
LOCATION 39—Located in bldg. 40 hear column 18 LOCATION 39—Located in bldg. 40A in front of
trichlor tank
LOCATION 39Located in bldg. 40A in front of
trichlor tank
LOCATION 40-Located in bldg 53 near dept. 9214
LOCATION 40-Located in bldg 53 near dept. 9214
LOCATION 41—Located in bldg 3A near repair
shop garage door.
LOCATION 41-Located in bldg 3A near repair
shop garage door.
LOCATION 42-Located in parking lost near guard
shack & bldg. 40.
LOCATION 42-Located in parking lost near guard
shack & bldg. 40.
LOCATION 43—Located on north side of bldg. 47
near hazardous waste storage area.
LOCATION 43-Located on north side of bldg. 47
near hazardous waste storage area.
LOCATION 44—In the fenced in area of gate 44.
LOCATION 44-In the fenced in area of gate 44.
LOCATION 45—Near rack storage area of former
bldg. 8.
LOCATION 45—Near rack storage area of former
bldg. 8.
LOCATION 46—On the south side of bldg. 50 near
sample 13.
LOCATION 46-On the south side of bldg. 50 near
sample 13.
LOCATION 47-Located opposite of degreaser sludge
storage tank.
LOCATION AT 1

LOCATION 47-Located opposite of degreaser sludge

LOCATION 48-Located across from plastic silo

Concrete encountered at 18' no sample

#86-Depth 20'-Concrete

#87-Depth 10'-Concrete

#88-Depth 20'-Concrete

#89-Depth 10'-Concrete

#90-Depth 20'-Concrete

#91-Depth 10'-Concrete

#91-Depth 20'-Concrete

Total 86 Samples at 44 Locations Contour Data 49 Samples at 25 Locations

4

ATTACHMENT C Soil Vapor Survey Results Chrysler Corporation Dayton Thermal Products Plant 1600 Webster Street Dayton, Ohio 45404

1.1 10 10 10	9	2	Ş	2	9	2	9	2	2	2	2	운	2	2 9	22	5 3	2	2	9	2	Ş	9	2	2 2	2 2	2	2	9	S	2	2	2 2	2	2	S	9	2	2 2	2 2	2 2	2	2	2	Ş	2	2	2			
	2	2	욷	2	Ş	9	2	≨!	2	2	7/91	2 5	50.00	27.62	14.25	17.58	26 02	59.74	60.53	¥	266	2	2	2 5	Z Z	Ş	S	Q	15 88	200	2 2	2 2	2.5	QV	2	9	2	2 2	2 5	2	Ş	S	Q	2	S	2	9		(qdd) uoming Je	vel is z.u ppb
	2	2	S	Q	Q	17.97	2	≨ 5	25.0	100	200	2 2	2 2	19.62	4.37	25 83	15.88	Q	Q	¥	10.25	21.81	2 9	2 5	2	9	Ş	QV	S	14.45	NO.	85.0	QN	Q	QN	9	2	2 5	2 5	9	Ş	QV	Q	2	S	2	Q.		Results are in Parts Per Billion (ppb)	Method Detection Level is 2.0 ppb
		3	2	33.29	2	2 5	2 4	2 5	2 3	2 5	2 2	2 5	2.48	Ş	2	æ	2	Q	101.87	≨ :	2	2 5	76.00	QN	¥	Ş	3.57	7.1	2	200	141 50	2	ş	Q.	6.88	200	40.00	2.55	2	£	2	2	Ş	374	29	2 9	2			
Ş	41.18		2 2	2 2	2 5	2 2	2 4	15.30	S CX	2	Ş	9	12.41	9	2	Q	Q	9	9	≨ 9	2 3	2	9	2	≨	₽	£	2	2 9	2 5	2	2	9	2	2	2 5	2 9	2	2	9	€	9	9	2	3 5	2 5	2			
47	Ş	Ş	2	2 3	2	17.88	¥	28	17.4	88.38	16.24	12.4	108 81	37.36	8.26	46.55	28.29	2	2 3	٤٥	40.75	11.31	2	20.63	ž	32.25	112.07	40 74	5 3	2	15.91	£	9	9	2 9	2	Ş	35 80	49.19	29.82	10.25	20	200	27.0	41.00	14.80		Soll Vapor Surve	Harch, 1995	
37.37	222 09	11.17	2017.65	1000	12.69	5.91	≨	33.16	16.25	43.71	18 85	10.5	43.65	25.99	10.97	12.83	16.24	1	2	88.5	16.42	18 51	2	3.08	¥	13.65	104.17	90.00	1.33	43.53	81.05	2.86	2.17	3 2	460	13.45	19 44	53 25	61 45	103.7	45	47.86	26.07	S	808	524	30.			
ĺ	2568 24		478		473	£	ž	5.35	17 05	9.29	82.73	51.89	160 92	100	9	8	8 9	2	. ₹	2.79	6.48	9	563	9	≨!	2	0.0	20 5	4.27	31.49	225 91	웆	9	3	2	299	2.64	43.06	33.71	116.95	7.47	16/3/45	26.19	S.	34.23	2	No Sample Collected at	ou	Dayton, Ohlo	
	8	0	2	2	R	2	8	2	ଛ	5	ଛ	2	8	2 8	8	2 8	3	_	9	8	0	92	2	8	2 8	8 5	2 8	2 9	8	01	8	2	8 5	2 8	9	8	5	2	9	8 9	2 8	8 9	2	2	2	2		te investigat	Q.	
7	5	2	2	23	23	₹.	7.7	22	22	2	8	27	/Z	87	2 2	200	8	31	33	33	ಸ	3	25	8 8	8 8	8 2	37	8	8	8	8	\$ 5	3 5	=	42	42	43	3	\$	3 4	2 4	2 9	3	47	47	\$	8	Clean Tech Site Investigation	Chrysler DTP	-
	= !!	7	63	7	\$	8	>	\$ 19	2	8	5.5	76	3 3	3	3 5	25	3	95	5	62	8	3	3 8	8 2	3	3	20	7.1	72	23	7	2 2	2 ~	7.8	79	8	-	8 8	3 3	5	3 5	20	8	2	8	5	28			

ATTACHMENT D

General Procedures for Drilling and Soil Sampling
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404

General Procedures for Drilling and Soil Sampling Chrysler Corporation

Dayton Thermal Products Plant

Drilling Procedures - Soil Borings

- The drill rig, augers, bits, and tools were steam cleaned prior to the start of
 each boring. All equipment contacting soil or groundwater was steam cleaned
 prior to commencing each borehole and after completion of the last borehole.
 No lubricants were used on drill rod or auger joints;
- Split spoon soil samples were collected starting at approximately four feet BGS. Sampling continued to the bottom of each borehole at five foot intervals. Individual soil samples were stored in sample jars and labeled with information on the location, depth, date, and blow counts. The samples were stored on-site. Disposable latex gloves were worn by field team members while handling soil samples;
- All field activities were performed in accordance with the Health and Safety Plan (HASP). Personal protection levels for field personnel were followed as stipulated in the HASP. Compliance with these levels was maintained through air monitoring as prescribed in the HASP;
- Drilling fluids and cuttings, and decontamination fluids were screened for organic vapor emissions using a photoionization detector. No organic vapor measurements were found which exceeded the action levels described in the HASP:
- All drilling was supervised by a qualified geologist. Supervision included maintaining a field activities log, preparation of stratigraphic logs, and any appropriate photographic documentation.

Soil Sampling Procedures - Soil Borings

- Soil samples were collected using a two-inch O.D. split spoon sampler;
- Following advancement of the augers to the sampling depth, the split spoon sampler was lowered to the top of the sampling interval on the drill rods;
- Four six-inch intervals were marked on the drill rods:
- Soil samples were collected using a standard penetration test. The number of blows was recorded as applied by a 140 pound weight falling thirty inches to drive the sampler for each six-inch interval. A total sampled thickness of 24 inches was recorded. The blow counts for the second six-inch interval and third six-inch interval were added and recorded as the standard penetration number;
- Each sample was then brought to the surface and opened. Photoionization detector measurements were made and recorded for each split spoon sample;
- Each soil sample was geologically logged and described. The length of soil sample collected was recorded. The composition, structure, consistency, moisture, color, and sample condition were described. oil descriptions

used the Unified Soil Classification System (USCS) classifications, and Munsell Chart color descriptions;

• Each soil sample was tested using a hydrophobic dye for the presence of non-aqueous phase liquid. This was a qualitative screening test performed in the field at the time the sample was collected. The dye test would detect both light (LNAPL) and dense non-aqueous phase liquids (DNAPL) if present. The powdered dye, Sudan IV, was added to a slurry made from the soil sample and potable water. The slurry was then agitated by shaking the sample container. The dye would dissolve in the soil slurry if non-aqueous phase liquids were present in sufficient amounts, coloring the slurry a dark red. If non-aqueous phase liquids were not present, then the powdered dye would not dissolve in the slurry;

- Samples were stored in clean jars and labeled to show project, boring number, number of blows for advancing sampler, depth interval, date, and sampler initials;
- The soil samples were placed in sequence, by depth, in a storage box with dividers between the jars to prevent breakage. Each box was labeled and retained on-site;
- The hollow stem auger equipped with a snug fitted steel stem plug was then
 advanced to the top of the next sample interval, the plug was removed and the
 above steps were repeated for the next sample;
- All boreholes were grouted to grade with a cement and bentonite mixture.

Drilling Procedures - Shallow Monitoring Wells

- The drill rigs, augers, bits, and tools were steam cleaned prior to the start of
 each boring. All equipment contacting soil or groundwater was steam
 cleaned prior to commencing each borehole and after completion of the last
 borehole. No lubricants were used on drill rod or auger joints;
- Split spoon soil samples were collected from the shallow wells starting at approximately four feet BGS and continued to the bottom of each borehole at five foot intervals. All soil samples were stored in sample jars and labeled with information on the location, depth, date, and blow counts. Blow counts were not recorded for those samples collected using the cable tool rig. The samples were stored on-site. Disposable latex gloves were worn by field team members while handling all split-spoon samples;
- All field activities were performed in accordance with the Health and Safety Plan (HASP). Personal protection levels for field personnel were followed as stipulated in the HASP. Compliance with these levels was maintained through air monitoring as prescribed in the HASP;

- Drilling fluids and cuttings, and decontamination fluids were screened for organic vapor emissions using a photoionization detector. No organic vapor measurements were found which exceeded the action levels as described in the HASP;
- All drilling was supervised by a qualified geologist. Supervision included maintaining a field activities log, preparation of stratigraphic logs, and any appropriate photographic documentation.

Soil Sampling Procedures - Shallow Monitoring Wells

- Soil samples were collected using a two-inch O.D. split spoon sampler;
- Following advancement of the augers to the sampling depth, the split spoon sampler was lowered to the top of the sampling interval on the drill rods;
- Four six-inch intervals were marked on the drill rods;
- Soil samples were collected using a standard penetration test. The number of blows was recorded as applied by a 140 pound weight falling thirty inches to drive the sampler for each six-inch interval. A total sampled thickness of 24 inches was recorded. The blow counts for the second six-inch interval and third six-inch interval were added and recorded as the standard penetration number:
- Each sample was then brought to the surface and opened. Photoionization detector measurements were made and recorded for each split spoon sample;
- Each soil sample was geologically logged and described. The length of soil sample collected was recorded. The composition, structure, consistency, moisture, color, and sample condition were described. Soil descriptions used the Unified Soil Classification System (USCS) classifications, and Munsell Chart color descriptions;
- Each soil sample was tested using a hydrophobic dye for the presence of non-aqueous phase liquid;

- Samples were stored in clean jars and labeled to show project, boring number,
 number of blows for advancing sampler, depth interval, date, and sampler initials;
- The soil samples were placed in sequence, by depth, in a storage box with dividers between the jars to prevent breakage. Each box was labeled and retained on-site;
- The hollow stem auger equipped with a snug fitted steel stem plug was then advanced to the top of the next sample interval, the plug was removed and the above steps were repeated for the next sample.

Soil Sampling Procedures - Deeper Monitoring Wells

- Soil samples were collected using a three-inch O.D. split spoon sampler attached to a set of downhole casing jars. Samples were collected for lithologic description only. No blow counts were recorded;
- Each sample was brought to the surface and opened. Photoionization detector measurements were recorded for each split spoon sample;
- Each soil sample was geologically logged and described. The length of soil sample collected was recorded. The composition, structure, consistency, moisture, color, and sample condition were described. Soil descriptions used the Unified Soil Classification System (USCS) classifications, and Munsell Chart color descriptions;
- Each soil sample from the semi-confined aquifer was tested using a hydrophobic dye for the presence of non-aqueous phase liquid;
- Samples were stored in clean jars and labeled to show project, boring number,
 depth interval, date, and sampler initials;
- The soil samples were placed in sequence, by depth, in a storage box with dividers between the jars to prevent breakage. Each box was labeled and retained on-site.

ATTACHMENT E Soil Boring Logs Chrysler Corporation Dayton Thermal Products Plant 1600 Webster Street Dayton, Ohio 45404

Project	Chrysler Dayton Thermal Products	Boring Number	SB-1
Location	Dayton, Ohio	Date Started	10/17/94
Client	Chrysler Corporation	Date Completed	10/17/94
Driller	Moody's of Dayton	Drilling Method	4.25" HSA, CME 75
Elevation	751.55 MSL	Page Number	1 of 1
Water Lev	el & Date -26 ft BGS 10/17/94	Logged By	Thompson

Depth		Sample		SPT	Description: Name & USCS Group	Remarks
BGS (ft)	Int- erval			Result (N)	Symbol, Color, Moisture Content, Relative Density or Consistency	Air Monitor Data Dye Test, Wtr Dept
_ 5	4-6	s1	1.4	25-35 40-40 (75)	Poorly Graded Gravel with Clay and Sand (GP-GC); Moderate Red (5R5/4) to Light Brown (5YR6/4); Dry; Very Dense	BG, BG, 1.0 ppm Dye Test - Neg.
_ 10	9-11	52	1.7	18-27 32-37 (59)	Poorly Graded Gravel with Sand and Some Silt (GP); Very Light Gray (N8) to Light Gray (N7); Dry; Very Dense	BG, BG, 0.5 ppm Dye Test - Neg.
_ 15	14-16	s 3	1.4	19-34 50-28 (84)	Same as S2; Gravel is Well Rounded	BG, 3.2, 0.4 ppm Dye Test - Neg.
_ 20	19-21	S4	1.5	12-18 20-20 (38)	Same as S2; Slightly Moist	BG, 7.0 ppm, BG Dye Test - Neg.
_ 25	24-26	S 5	1.3	12-18	Poorly Graded Sand with Gravel (SP); Moderate Brown (5YR3/4); Wet; Medium Dense	BG, BG, BG _ Dye Test - Neg. Water Table ~26 ft BGS
_ 30	29-31	S6			Poorly Graded Sand and Gravel (SP); Pale Brown (5YR5/2); Wet; Dense	BG, BG, BG Dye Test - Neg.
-					•	_ Backfilled with Grout 0-31 ft

CLEAN TECH

chrysbl.log

N = Number Blows to Drive 2 " Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

	on Day Chi Mod ion 75	yton, rysler ody's 52.20	Ohio Cor of Da MSL	ooratio	Drilling Metho Page Number	
Depth BGS (ft)	Int- erval		Rec.		Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Remarks Air Monitor Data, Dye Test,Wtr Dept
_ 5	4-6	S1	1.7	15-25 27-30 (52)	Poorly Graded Gravel with Sand (GP) Light Brownish Gray (5YR6/1); Dry; Very Dense	; BG, BG, BG Dye Test - Neg.
_ 10	9-11	S 2	1.3	15-14 13-16 (27)	Poorly Graded Sand with Gravel (SP) Light Brownish Gray (5YR6/1); Slightly Moist; Medium Dense	BG, BG, BG Dye Test - Neg.
_ 15	14-16	S 3	1.3	20-20 20-18 (40)	Poorly Graded Sand and Gravel (SP) with a 2" Clay Pan Layer at 14.5' (5YR6/1), Clay was (10YR6/6); Dense; Moist	BG, 1.0 ppm, BG Dye Test - Neg
_ 20	19-21	S4	1.4	18-17 13-12 (30)	Poorly Graded Gravel with Sand and Clay (GP-GM); Pale Brown (5YR5/2); Medium Dense; Wet	BG, 2.5 ppm, BG Dye Test - Neg.
_ 25	24-26	S 5		32-33 (52)	Sandy, Silty, Clay with Gravel (CL-ML); Pale Yellowish Brown to Pale Brown (10YR6/2) to (5YR5/2); Wet; Very Dense	BG, BG, BG Dye Test - Neg.
_ 30	29-31	\$6		27-38	Poorly Graded Sand with Silt (SW-SM) Pale Brown (5YR6/2); Wet; Very Dense	Water Table -28 ft BGS BG, BG, BG Dye Test - Neg.
-						_ Backfilled with Grout 0-31 ft
	1					

CLEAN TECH chrysb2.log

N = Number Blows to Drive 2 " Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

lient rille: levat:	on Day	yton, rysler ody's 0.14	Ohio Cor of D Et MS	ooratio ayton		Boring Number Date Started Date Completed Drilling Method Page Number Logged By	
Depth BGS (ft)	Int-		Rec.	SPT Result (N)	Description: Name & Symbol, Color, Moisti Relative Density or C	ire Content,	Remarks Air Monitor Data Dye Test, Wtr De
_ 5	4-6	Sl	0.9	12-6 8-10 (14)	Silty Sand with Grave Gray (N7); Dry; Mediu		_ BG, BG, BG Dye Test - Neg
_ 10	9-11	S2	1.6	20-14 9-11 (23)	Top .5 ft same as S1; Silty Gravel (GM); Li Dry; Medium Dense		_ BG, BG, BG Dye Test - Neg
_ 15	14-16	s3	1.5	22-25 20-15 (45)	Poorly Graded Sand wi Very Light Gray (N8); Dense		BG, BG, 10.0 p Dye Test - Neg
_ 20	19-21	S4	1.6	19-25 20-23 (45)	Same as S3		_ BG, 0.5, 2.0 pp Dye Test - Neg
. 25	24-26	S 5			Poorly Graded Sand wi Gravel (SP-SM); Mediu (N4); Wet; Dense		_ BG, BG, 3.0 ppm Dye Test - Neg. Water Table
. 30	29-31	S6		35-34 (62)	Top 1 ft Poorly Grade Bottom 1 ft Poorly Gr Silt (SP-SM); Medium Wet; Very Dense	aded Sand with	~25 BGS _ BG, BG, 1.5 ppn _ Dye Test - Neg.

CLEAN TECH

chrysb3.log

Backfilled with Grout 0-31 ft

N = Number Blows to Drive 2 "Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler Dayton Thermal Products B	Boring Number _	SB-4
Location	Dayton, Ohio	Date Started	10/29/94
Client	Chrysler Corporation	Date Completed	10/31/94
Driller	Moody's of Dayton	Drilling Method	4.25" HSA, CME 75
Elevation	749.87 MSL F	Page Number	1 of 1
Water Lev	el & Date _ ~25 ft BGS 10/31/94 I	Logged By	Thompson

Depth		Sample	3	SPT	Description: Name & USCS Group	Remarks
BGS	Int-	Type		I	Symbol, Color, Moisture Content,	Air Monitor Data Dye Test, Wtr Depth
(ft)	erval	ano.	(10)	(N)	Relative Density or Consistency	Dye lest, wir Depth
_ 5	4-6	S1	1.2	12-13 17-20 (30)	Well Graded Gravel with Sand and Silt (GW-GM); Light Brownish Gray (5YR6/1); Dry; Dense	_ BG, BG, 0.5 ppm Dye Test - Neg.
_ 10	9-11	52	1.5	14-22 21-18 (43)	Same as S1	_ BG, BG, 1.0 ppm Dye Test - Neg.
_ 15	14-16	s 3	1.0	5-5 5-9 (10)	Well Graded Gravel with Clay (GW-GC) Brownish Gray (5YR4/1); Wet; Loose	_ BG, BG, 2.0 ppm Dye Test - Neg.
_ 20	19-21	S4	1.2	8-11	Same as S3 with a small band of orange staining ~6" from the bottom of the spoon	_ BG, BG, 1.0 ppm Dye Test - Neg.
_ 25	24-26	\$5		35-43	Well Graded Gravel with Sand (GW); Brownish Gray (5YR4/1); Wet; Very Dense	BG, BG, 2.0 ppm Dye Test - Neg. Water Table
_ 30	29-31	S 6		15-16	Well Graded Gravel with Sand and Clay (GW-GC); Brownish Gray (5YR 4/1); Wet; Dense	~25 ft BGS _ BG, BG, 2.0 ppm _ Dye Test ~ Neg.
-					·	Backfilled with Grout 0-31 ft

CLEAN TECH

chrysb4.log

N = Number Blows to Drive $\frac{2}{2}$ " Spoon $\frac{24}{2}$ " with $\frac{140}{2}$ lb. Weight Falling $\frac{30}{2}$ " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler Da	ayton Thermal	Products	Boring Number	SB-5	
Location	Dayton, Oh:	io		Date Started	10/19/94	
Client	Chrysler Co	orporation		Date Completed	10/19/94	
Driller	Moody's of	Dayton		Drilling Method	4.25" HSA, CME	75
Elevation	751.20 MSL			Page Number	1 of :	1
Water Lev	el & Date	~26 ft BGS	10/19/94	Logged By	Thompson	
	_					

Depth		Sample	3	SPT	Description: Name & USCS Group	Remarks
BGS (ft)	Int- erval			Result (N)	Symbol, Color, Moisture Content, Relative Density or Consistency	Air Monitor Data Dye Test,Wtr Dept
_ 5	4-6	S1	1.5	20-25	Well Graded Sand with Silt and	_ BG, 0.4 ppm, BG
				30-38 (55)	Gravel (SW-SM); Light Brownish Gray (5YR6/1); Dry; Very Dense	Dye Test - Neg.
_ 10	9-11	S 2	1.6	10-10 12-15 (22)	Poorly Graded Sand with Gravel (SP); Moderate Brown (5YR4/4); Moist; Medium Dense	BG, BG, 2.0 ppm Dye Test - Neg.
_ 15	14-16	S 3	1.7	15-15 20-20 (35)	Well Graded Sand with Silt and Gravel (SW-SM); Light Brownish Gray (5YR6/1); Moist; Dense	BG, BG, 9.0 ppm Dye Test - Neg.
_ 20	19-21	S4		45-70 33-33 (103)	Same as S3; Very Dense	BG, BG, 10.0 pp Dye Test - Neg.
_ 25	24-26	S 5		55-27	Well Graded Gravel with Sand (GW); Moderate Brown (5YR4/4); Wet; Very Dense	BG, 1.5, 8.0 pp Dye Test - Neg.
30	29-31	S6		35-50 45-35 (95)	Same as SS	<pre>BG, 5.0,10.0 ppr Dye Test - Pos. Water Table -25 ft BGS</pre>
						<pre>Backfilled with Grout 0-31 ft</pre>

CLEAN TECH

chrysb5.log

N = Number Blows to Drive $\frac{2}{2}$ " Spoon $\frac{24}{2}$ " with $\frac{140}{2}$ lb. Weight Falling $\frac{30}{2}$ " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Location Client Drille: Elevat.	on Da Ch r Mo ion 75	yton, rysle ody's 2.01	Ohio r Cor of D MSL			Boring Number Date Started Date Completed Drilling Method Page Number Logged By		ME 75
Depth BGS (ft)			Rec.	SPT Result (N)	Description: Name & Symbol, Color, Moist Relative Density or	ure Content	Remarks Air Monitor Dye Test,Wtr	
_ 5	4-6 9-11	S1		15-26 32-30 (58)	Well Graded Sand wit Gravel (SW-SC); Ligh (5YR6/1); Dry; Very Same as S1; Dense	t Brownish Gray	BG, BG, 0.5 Dye Test - BG, BG, 2.0	Neg.
_ 15	14-16			20-28 (38) 13-8	Well Graded Gravel w		Dye Test - _ BG, BG, 4.0	Neg.
_ 20	19-21	S 4	1.8	7-9 (15) 18-22 18-17	Silt (GW-GM); Grayis 5/2); Dry; Medium De Same as S3; Dense		Dye Test -	·
_ 25	24-26	s 5	1.7	(40)	Well Graded Gravel w		Dye Test	

BG, 3.0, 1.5 ppm

Dye Test - Neg.

Dye Test - Neg.

Backfilled with Grout 0-31 ft

Water Table -25 ft BGS

BG, BG, BG

CLEAN TECH chrysb6.log

Orange Staining

(5YR4/1); Wet; Dense

18-20

24-28

(48)

1.8 26-24

30

29-31

S6

(36)

N = Number Blows to Drive 2 "Spoon 24 "with 140 lb. Weight Falling 30 "Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Brownish Gray (5YR4/1); Wet; Dense;

Well Graded Gravel with Sand, Silt,

and Some Clay (GW-GM); Brownish Gray

	<u>n</u>	Date Completed _	10/20			
Driller Moody's of Dayton Elevation 751.41 MSL		Drilling Method Page Number	4.25"	HSA,	CME	75

Depth BGS (ft)	Int- erval		Rec.	SPT Result (N)	Description: Name & USCS Group Symbol, Color, Moisture Content Relative Density or Consistency	Remarks Air Monitor Data Dye Test,Wtr Depth
_ 5	4-6	S1	1.4	23-43 50-45	Well Graded Sand with Silt and Gravel (SW-SM); Light Gray (N7) to	_ BG, BG, 0.5 ppm Dye Test - Neg.
_ ¹⁰	9-11	S 2	1.5	(93) 9-12 14-14 (26)	Light Brownish Gray (5YR6/1); Dry; Very Dense Poorly Graded Sand with Gravel (SP); Brownish Gray (5YR4/1); Moist; Medium Dense	_ BG, BG, 1.5 ppm Dye Test - Neg.
_ 15	14-16	s 3	1.9	10-15 17-25 (32)	Well Graded Sand with Silt and Gravel (SW-SM); Light Brownish Gray (N7); Moist; Dense	_ BG, 3.0,10.0 ppm Dye Test - Neg.
_ 20	19-21	S4	1.5		Well Graded Gravel with Sand and Silt (GW-GM); Light Brownish Gray (5YR6/1); Moist; Very Dense	_ BG, 4.0, 2.0 ppm Dye Test - Neg.
_ 25	24-26	S5			Poorly Graded Sand with Gravel (SP); Brownish Gray (5YR4/1); Wet; Dense	BG, BG, 4.5 ppm Dye Test - Neg. Water Table
_ 30	29-31	S6		25-25	Poorly Graded Sand with Silt and Gravel (SP-SM); Brownish Gray (5YR 4/1); Wet; Very Dense	~25 ft BGS BG, 3.0, 3.0 ppm Dye Test - Neg.
_						Backfilled with Grout 0-31 ft

CLEAN TECH

chrysb7.log

N = Number Blows to Drive 2 " Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler Dayton ?	Thermal	Products	Boring Number	SB-8
Location	Dayton, Ohio			Date Started	10/19/94
Client	Chrysler Corporat	tion		Date Completed _	10/19/94
Driller	Moody's of Dayton	n	Drilling Method	4.25" HSA, CME 75	
Elevation	751.34 MSL			Page Number	1 of 1
Water Lev	el & Date~25 :	ft BGS	10/19/94	Logged By	Thompson

Depth		Sample	•	SPT	Description: Name & USCS Group	Remarks
BGS		Type	Rec.	Result (N)	Symbol, Color, Moisture Content Relative Density or Consistency	Air Monitor Data Dye Test, Wtr Depth
_ 5	4-6	S1	1.0	12-32 34-33	Well Graded Sand with Silt (SW-SM); Light Brownish Gray (5YR6/1); Dry;	BG, BG, 1.0 ppm Dye Test - Neg.
_ 10	9-11	S 2	1.3	(66) 12-17 18-20	Well Graded Sand with Gravel (SM); Brownish Gray (5YR4/1); Moist;	BG, BG, 4.0 ppm Dye Test - Neg.
_ 15	14-16	s3	1.3	(35) 20-25 25-23 (50)	Dense Same as S2; Very Dense	BG, 0.5,1.0 ppm Dye Test - Neg.
_ 20	19-21	54		25-40	Clay with Gravel (CH); Brownish Gray (5YR4/1) to Light Brown (5YR5/6) Moist; Dense	_ BG, BG, BG _ Dye Test - Neg.
_ 25	24-26	S 5			Poorly Graded Sand with Gravel (SP); Moderate Brown (5YR4/4); Wet; Dense	BG, 0.5,8.0 ppm Dye Test - Neg. Water Table
30	29-31	S6		19-20	Top foot <u>Poorly Graded Sand</u> (SP); Bottom foot <u>Well Graded Sand</u> (SW); Brownish Gray (5YR3/2); Wet; Dense	-25 ft BGS - BG, 9.0,1.0 ppm Dye Test - Neg.
						- Backfilled with Grout 0-31 ft

CLEAN TECH

chrysb8.log

N = Number Blows to Drive 2 "Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

					GEOLOGIC LOG		
?rojec	t <u>Ch</u>	rysle	r Day	ton The	rmal Products Boring Num	ber	SB-9
	on Da				Date Start	_	10/21/94
lient				poratio			10/21/94
	Mo			ayton	Drilling M		
	ion <u>75</u> Level			~26 ft	Page Numbe BGS 10/21/94 Logged By	<u> </u>	1 of 1 Thompson
ater .	rever	a Dat		-20 IC	BGS 10721794 Hogged By		THOMPSON
Depth		Sample	e	SPT	Description: Name & USCS Group		Remarks
BGS		Type	Rec.	Result	Symbol, Color, Moisture Content		Air Monitor Dat
(ft)	erval	&No.	(ft)	(N)	Relative Density or Consistency		Dye Test,Wtr De
							······································
]	1	}				
				1			
		1		1			
5	4-6	51	1.0	2-4	Clay with Gravel (CH); Brownish		BG, BG, BG
_		1		6-7	Gray (5YR4/1); Moist; Loose		Dye Test - Nec
				(10)			
10	9-11	S2	0.7	6-5	Well Graded Gravel with Sand (G	٥١٠	BG, BG, BG
- ~~	J 11			5-5	Brownish Gray (5YR4/1); Dry;	- / /	Dye Test - Nec
				(10)	Medium Dense		
_ 15	14-16	s3	1.3)	Same as S2; Wet		_ BG, BG, 1.0 pr
				11-16 (20)			Dye Test - Neg
1	į			(20)			
ĺ	į		į			į	
_ 20	19-21	S4	2.0		Poorly Graded Sand with Gravel	(SP) ;	
j]	1	}	28-30	• •	ry;	_ BG, 1.0,15.0 p
)	j	ļ	1	(63)	Very Dense	1	Dye Test - Pos
}	1	}				ł	
25	24-26	S 5	1.6	23-30	Poorly Graded Sand with Gravel	(SP):	
•				,	Medium Dark Gray (N4); Wet; Very		BG, BG, 8.0 pp
- 1	l	[(60)	Dense	ĺ	Dye Test - Neg
1	Į	ļ	Į			- [Water Table
30	29-31	S6			No Commis Colleges	}	~26 ft BGS
- 30	49-31	20]		No Sample Collected		
1	l	1	Ì	1		ľ	-
1	Í			1		1	
1	1	ŀ	Í	1		1	
.		}		}			n = =1=#233
Į	}	- 1	- {	{		.	_ Backfilled wit
l	}		- 1			- 1	Grout 0-31 ft

CLEAN TECH

chrysb9.log

N = Number Blows to Drive 2 "Spoon 24" with 140 lb. Weight Falling 30 "Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler D	ayton Thermal	Products	Boring Number	SB-10
Location	Dayton, Oh	io		Date Started	10/21/94
	Chrysler C	orporation		Date Completed	10/21/94
	Moody's of			Drilling Method	4.25" HSA, CME 7
Elevation	752.33 MSL	_		Page Number	1 of 1
Water Leve		~27 ft BGS	10/21/94	Logged By	Thompson

Depth BGS	Int-	Sample Type		SPT Result	Description: Name & USCS Group Symbol, Color, Moisture Content	Remarks Air Monitor Data
	erval			(N)	Relative Density or Consistency	Dye Test, Wtr Dept
_ 5	4-6	Sl	1.3	13-16 17-20 (33)	Well Graded Gravel with Sand and Silt (GW-GM); Light Brownish Gray (5YR6/1); Dry; Dense	BG, BG, 1.0 ppm Dye Test - Neg.
_ 10	9-11	S2	2.0	35-40 22-20 (62)	Well Graded Gravel with Sand (GW); Brownish Gray (5YR4/1); Dry; Very Dense	BG, BG, 0.5 ppm Dye Test - Neg.
_ 15	14-16	S 3	1.8	33-21 17-21 (38)	Same as S2; Larger Gravel	BG, BG, BG Dye Test - Neg.
_ 20	19-21	S4			Clay with Gravel and Sand (CH); Brownish Gray (5YR4/1); Moist; Dense	BG, BG, BG Dye Test - Neg.
_ 25	24-26	<i>s</i> 5		15-22 24-45 (46)	Same as S4; Wet	BG, BG, BG Dye Test - Neg. Water Table -27 ft BGS
_ 30	29-31	56		18-20	Well Graded Gravel with Clay and Sand (GW-GC); Moderate Brown (5YR 4/4); Wet; Dense	BG, 1.0,15 ppm Dye Test - Neg.
						<pre>Backfilled with Grout 0-31 ft</pre>

CLEAN TECH

chrysb10.log

N = Number Blows to Drive 2 " Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

ATTACHMENT G

Quality Control Procedures for Soil Samples
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404

Quality Control Procedures for Soil Samples

Chrysler Corporation

Dayton Thermal Products Plant

Chemical Analysis

- Sample collection was done using new disposable latex gloves, laboratory prepared glassware, and thorough decontamination of the split spoon samplers. Decontamination of the split spoon samplers was accomplished by washing all sampler parts using a phosphate-free detergent followed by a potable water rinse. The equipment was then rinsed using deionized water, and a solution of 10% methanol and deionized water. The equipment was then allowed to air dry;
- Samples were labeled to show project name, boring number, depth interval, date, analysis requested, and the sampler's initials;
- Samples were placed on ice in coolers for transport to the analytical laboratory. Samples were logged using chain of custody documentation provided by the laboratory performing the analysis, Canton Analytical Laboratory, Inc. of Plymouth, Michigan. The samples were delivered by overnight courier to Canton Analytical Laboratory, Inc. under chain of custody control;
- Two soil sample duplicates were collected (ten percent duplicates);
- One equipment blank was collected (one per round of sampling);
- One matrix spike sample and one matrix spike duplicate sample were analyzed (one per round of sampling);
- The samples were shipped and received at the laboratory within the EPA standard holding times for each analysis.

Geotechnical Analysis

- Sample collection was completed using new disposable latex gloves, clean glassware, and thorough decontamination of the split spoon samplers. Decontamination of the split spoon samplers was accomplished by washing all sampler parts using a phosphate-free detergent followed by a potable water rinse. The equipment was rinsed using deionized water, and a solution of 10% methanol and deionized water. The equipment was then allowed to air dry;
- Samples were labeled to show project name, boring number, depth interval, date, analysis requested, and the sampler's initials.

ATTACHMENT I

Groundwater Monitoring Well Logs
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404

Project	Chrysler_D	ayton Thermal Pr	oducts	Boring Number	MWA1			
Location	Dayton, Oh	io		Date Started	ate Started 11/14/94			
Client	Chrysler C	orporation		Date Completed	11/14/94			
Driller	Moody's of	Dayton		Drilling Method	4.25" HSA,	CME 75		
Elevation	751.43 MSL			Page Number	1 of	2		
Water Lev	el & Date	26.2 ft BGS	11/17/94	Logged By	Thompson			

Dept		Sample		SPT	Description: Name & USCS Group	1	Remarks
BGS (ft		Type &No.		Result (N)	Symbol, Color, Moisture Content Relative Density or Consistency		Monitor Data Mest, WellCon
5	4-6	S1	1.1	14-16 20-21 (36)	Well Graded Gravel with Sand (GW); Light Brownish Gray (5YR6/1); Dry; Dense		BG, 0.5 ppm Test - Neg.
_ 10	9-11	S2	1.2	23-29 18-18 (47)	Same as S1		BG, 4.0 ppm Test - Neg.
_ 15	14-16	S 3	1.4	24-25 23-25 (48)	Same as S2		10, 5 ppm Test - Neg.
_ 20	19-21	S4	1.3	25-30 23-20 (53)	Same as S3; Very Dense		3, 10 ppm Test - Neg.
_ 25	24-26	\$ 5		26-33	Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Moist; Very Dense	- BG, Dye	3, 10 ppm Test - Neg.
_ 30	29-31	S6		25-30	Well Graded Gravel with Sand (GW); Brownish gray (5YR4/1); Wet; Very dense		6, 6 ppm Test - Neg.
_ 35	34-36	S7		35-35	Top 1 ft same as S6; Bottom 0.8 ft Well Graded Sand (SW); Brownish Gray (5YR4/1); Wet; Very Dense		40, 15 ppm Test - Neg.
Į		j	ĺ	1			

CLEAN TECH

chryall.log

N = Number Blows to Drive $\underline{2}$ " Spoon $\underline{24}$ " with $\underline{140}$ lb. Weight Falling $\underline{30}$ " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Water Lev	el & Date	26.2 ft BGS	11/17/94	Logged By	Thom	oson		
Elevation	751.43 MSI			Page Number	2	of	2	
Driller	Moody's of			Drilling Method	4.25"	HSA,	CME	75
Client	Chrysler (Corporation			11/14			
	Dayton, Or			Date Started	11/14			
Project	Chrysler I	Dayton Thermal I	roducts	Boring Number _	MWA1		_	

Depth		Sample		SPT	Description: Name & USCS Group	Remarks
BGS (ft)	Int-				Symbol, Color, Moisture Content, Relative Density or Consistency	Air Monitor Data Dye Test, WellCon
_ 40	39-41	S8	1.9	27-38 40-44 (78)	Top 0.5 ft Well Graded Sand (SW); Bottom 1.4 ft Well Graded Gravel (GW); Brownish Gray (5YR4/1); Wet; Very Dense	BG, 10, 7 ppm Dye Test - Neg.
-				-: .		Well Construction Total Depth 39
_						Screen 29-39 Sand 26.5-39 Bent. 23.8-26. Grout 0-23.8 Riser 0-29
-						Screen is 10 Slo Screen & Riser _2"PVC
-						_
-						-
-						_

CLEAN TECH

chrysal2.log

N = Number Blows to Drive 2 " Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler D	ayton Thermal	Products	Boring Number	MWA2			
Location	Dayton, Oh	io		Date Started	10/28/94			
Client	Chrysler C	Corporation		Date Completed	/94			
Driller	Moody's of	Dayton	Drilling Method	6.25"	HSA,	CME	75	
Elevation	749.45 MSL			Page Number	1	of	2	
Water Level & Date 24.2 ft BGS 11/18/94				Logged By	Thompson			

	Depth BGS (ft)	Int- erval		Rec.	SPT Result (N)	Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Remarks Air Monitor Data Dye Test, WellCon
	,,,,,,,,,						
	_ 5	4-6	Sl	1.1	21-25 24-25 (49)	Poorly Graded Gravel with Silt (GP-GM); Light Brownish Gray (5YR 6/1); Dry; Dense	_ BG, BG, BG, Dye Test - Neg.
	_ 10	9-11	S2	1.0	25-26 22-21 (48)	Same as Sl	_ BG, BG, 1.5 ppm Dye Test - Neg.
	_ 15	14-16	s3	1.5	11-19 26-26 (45)	Well Graded Gravel with Sand (GW); Brownish Gray (5YR 4/1); Dry; Dense	_ BG, BG, 10 ppm Dye Test - Neg.
_	_ 20	19-21	S4			Well Graded Sand with Silt and Gravel (SW-SM); Brownish Gray (5YR 4/1); Dry; Dense	_ BG, 20, 12 ppm _ Dye Test - Neg.
	25	24-26	S 5			Well Graded Sand with Gravel (SW) Brownish Gray (5YR4/1); Wet; Dense	_ BG, 10, 4 ppm Dye Test - Neg.
	. 30	29-31	S 6			Well Graded Gravel (GW); Brownish Gray (5YR4/1); Wet; Dense	_ 1, 17, 5 ppm _ Dye Test - Neg.
	35	34-36	57		51-61	Well Graded Gravel with Sand (GW); Brownish Gray (5YR4/1); Wet; Very Dense	_ BG, BG, 4 ppm Dye Test - Neg.

CLEAN TECH

chrysa21.log

N = Number Blows to Drive $\underline{2}$ " Spoon $\underline{24}$ " with $\underline{140}$ lb. Weight Falling $\underline{30}$ " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

		24.2 ft BGS	Logged By Thompson			<u></u>		
Elevation	749.45 MS	Τ.		Page Number	2	of	2	
Driller	Moody's o	f Dayton		Drilling Method	6.25"	HSA,	CME	75
Client	Chrysler	Corporation		Date Completed	10/28/94			
Location	Dayton, O	hio		Date Started	10/28/94			
Project	Chrysler	Dayton Thermal P:	roducts	Boring Number _	MWA2			

Depth		Sample		SPT	Description: Name & USCS Group	Remarks
BGS (ft)					Symbol, Color, Moisture Content, Relative Density or Consistency	Air Monitor Data Dye Test, WellCon
_ 40	39-41	S8	2.0	22-25 29-41 (54)	Well Graded Gravel with Sand and Clay (GW-GC); Brownish Black (5YR 2/1); Wet; Very Dense	_ 1, 4, 4 ppm Dye Test - Neg.
_						Well Construction
_						Total Depth 40 Screen 30-40 Sand 27-40 Bent. 23.5-23 Grout 0-23.5 Riser 0-30
_						Screen is 10 Slot Screen & Riser _2" PVC
-						
-						_
-					· ·	-

CLEAN TECH

chrysa22.log

N = Number Blows to Drive $\underline{2}$ " Spoon $\underline{24}$ " with $\underline{140}$ lb. Weight Falling $\underline{30}$ " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

					GEOLOGIC LOG	
Projec					rmal Products Boring Numb	
Locati Client	on <u>Da</u> Ch	rvsle:	r Cor	poratio		
Drille				ayton	Drilling Me	thod 4.25" HSA, CME 7
Elevat				C 0 6+	Page Number	
Water	Level	& Date	e <u>2</u>	6.8 ft	BGS 11/18/94 Logged By	Thompson
Depth		Sample	9	SPT	Description: Name & USCS Group	Remarks
BGS	Int-				Symbol, Color, Moisture Content,	
(ft)	erval	&NO.	(It)	(N)	Relative Density or Consistency	Dye Test, WellCon
_ 5	4-6	sı	1.6	12-12 15-15 (27)	Well Graded Gravel with Sand (GW Brownish Gray (5YR4/1); Dry; Med Dense	
_ ¹⁰	9-11	S2	1.2	10-7 5-10 (12)	Same as S1	BG, BG, BG Dye Test - Neg.
_ 15	14-16	s 3	0.8	7-5 4-7 (9)	Same as S2; Loose	BG, BG, BG Dye Test - Neg.
_ 20	19-21	S4	1.8	75-25 27-32 (52)	Clay with Gravel (CH); Moderate Yellowish Brown (10YR5/3); Dry; Very Dense	BG, BG, 2 ppm Dye Test - Neg.
_ 25	24-26	\$5	1.6	17-20 23-30 (43)	Well Graded Sand (SW); Pale Yellowish Brown (10YR6/2); Dry; Dense	_ BG, BG, 12 ppm Dye Test - Neg.
_ 30	29-31	56	1.8	33-40	Well Graded Sand with Gravel (SW Brownish Gray (5YR4/1); Wet; Very Dense	BG, BG, 70 ppm Dye Test - Neg.
_ 35	34-36	s7	1	35-30 28-35 (58)	Same as S6; Orange Staining	BG, BG, 70 ppm Dye Test - Neg.

CLEAN TECH

chrysa31.log

N = Number Blows to Drive 2 " Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler Dayton Thermal Products	Boring Number	MWA3
Location	Dayton, Ohio	Date Started	11/11/94
Client	Chrysler Corporation	Date Completed	11/11/94
Driller	Moody's of Dayton	Drilling Method	4.25" HSA, CME 75
Elevation	752.19 MSL	Page Number	2 of 2
Water Lev	el & Date 26.8 ft bgs 11/18/94	Logged By	Thompson

BGS Int- Type Rec. (ft) (N) Relative Density or Consistency Air Monitor Dye Test, Wel 40 39-41 S8 1.8 35-45 60-60 (105) Well Graded Gravel with Sand and Some Clay (GW); Brownish Gray (5YR 4/1); Wet; Very Dense Well Construction Total Depth Screen 29 Sand 27 Bent. 25 Grout 0- Riser 0- Screen is 10	Depth		Sample	e	SPT	Description: Name & USCS Group	Remarks
Go-60 Some Clay (GW); Brownish Gray (5YR 105) Well Construction Well Construction Total Depth Screen 29 Sand 27 Bent. 25 Grout 0 Riser 0 Screen & Rise	BGS	Int-	Type	Rec.		Symbol, Color, Moisture Content,	Air Monitor Data Dye Test, WellCon
Total Depth Screen 29 Sand 27 Bent. 25 Grout 0- Riser 0- Screen is 10 Screen & Rise	_ 40	39-41	S 8	1.8	60-60	Some Clay (GW); Brownish Gray (5YR	_ BG, BG, 5 ppm Dye Test - Neg.
Bent. 25- Grout 0- Riser 0- Screen is 10 Screen & Rise	_						
Screen & Rise	_						_Bent. 25-27 Grout 0-25 Riser 0-29
	-		·				Screen & Riser
							_
							_
							_

CLEAN TECH

chrysa32.log

N = Number Blows to Drive 2 "Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler D	Dayton Thermal P	roducts	Boring Number	MWA4 10/24/94			
	Dayton, Oh			Date Started				
Client	Chrysler C	orporation		Date Completed	10/24/94			
Driller	Moody's of	Dayton		Drilling Method	6.25" HSA,	CME 75		
Elevation	751.27 ft	MSL		Page Number	1 of	2		
Water Leve	l & Date	25.8 ft BGS	11/19/94	Logged By	Thompson			

Depth		Sample	3	SPT	Description: Name & USCS Group		Remarks
BGS (ft)		Type	Rec.	Result (N)	Symbol, Color, Moisture Content, Relative Density or Consistency		Monitor Data Mest, WellCo
_ 5	4-6	S1	0.8	8-13 10-12 (23)	Well Graded Sand with Gravel and Silt (SW-SM); Light Brownish Gray (5YR6/1); Dry; Medium Dense	_ BG, Dye	BG, BG Test - Neg
_ 10	9-11	S 2	1.3	12-14 30-33 (44)	Same as S1; Dense; Larger Grains		BG, 1.5 ppr Test - Neg
_ 15	14-16	s 3	1.5	18-18 15-15 (33)	Well Graded Gravel with Sand (GW); Brownish Gray (5YR4/1); Dry; Dense	- BG, Dye	BG, 0.5 ppm Test - Neg
_ 20	19-21	S4	1.7	60-90	Well Graded Gravel with Sand and Clay (GW-GC); Light Brownish Gray (5YR6/1); Dry; Very Dense		BG, 50 ppm Test - Neg.
_ 25	24-26	S 5	1.9		Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Moist; Dense		8, 75 ppm Test - Pos.
_ 30	29-31	S 6		25-29	Poorly Graded Sand with Gravel (SP); Brownish Black (5YR2/1); Wet; Dense		13, 80 ppm Test - Neg.
_ 35	34-36	S7		22-23 30-30 (53)	Same as S6; Very Dense		40, 80 ppm Test - Neg.

CLEAN TECH

chrya41.log

N = Number Blows to Drive 2 "Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler Dayton Thermal Products Boring Nu	mber _	MWA4			
Location	Dayton, Ohio Date Star	ted	10/24	/94		
Client	Chrysler Corporation Date Comp	leted	10/24	/94		
Driller	Moody's of Dayton Drilling	Method	6.25"	HSA,	CME	75
Elevation	751.27 ft MSL Page Numb	er	2	of		2
Water Lev	el & Date <u>25.8 ft BGS 11/19/94</u> Logged By	<i>'</i>	Thomp	son		

Depth BGS (ft)	Int-		Rec.		Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Remarks Air Monitor Data Dye Test, WellCon
_ 40	39-41	S 8	2.0	35-40 45-75 (85)	Poorly Graded Sand with Silt (SW-SM) Brownish Black (5YR2/1); Wet; Very Dense	_ BG, 20, 100 ppm Dye Test - Neg.
_ 45	44-46	s9	2.0	50-52 70 (122)	Same as S8	_ 2, 40, 60 ppm Dye Test - Neg.
-						Well Construction Total Depth 45
_						Screen 35-45 Sand 32.5-45 Bent. 28.7-32.5 Grout 0-28.7 Riser 0-35
_						Screen is 10 Slot _Screen & Riser _2" PVC
_						_
_						-

CLEAN TECH

chrya42.log

N = Number Blows to Drive 2 "Spoon 24 "with 140 lb. Weight Falling 30 "Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler D	ayton Th	ermal Produc	cts	Boring Number	MWA5		
Location	Dayton, Oh	io		Date Started	11/15/94			
Client	Client Chrysler Corporation					11/15/94		
Driller	Moody's of	Dayton		-	Drilling Method	4.25" HSA, CME 75		
Elevation	751.25 ft	MSL			Page Number	1 of 2		
Water Lev	el & Date	26 ft B	SS	11/18/94	Logged By	Thompson		

	Depth BGS (ft)	Int-		Rec.	SPT Result (N)	Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Air M	Remarks onitor Data est, WellCon
	_ 5	4-6	S1	1.3	10-11 14-21 (25)	Well Graded Gravel with Silt and Clay (GW-GC); Light Brownish Gray (5YR6/1); Dry; Medium Dense		BG, 1 ppm Test - Neg.
	_ 10	9-11	52	1.2	11-12 25-30 (37)	Well Graded Gravel with Silt (GW-GM); Light Brownish Gray (5YR 6/1); Dry; Dense		BG, 3 ppm Test - Neg.
	_ 15	14-16	s3	1.2	20-19 15-20 (34)	Poorly Graded Sand with Gravel (SP); Brownish Gray (5YR4/1); Dense; Dry	- BG, Dye	BG, 3 ppm Test - Neg.
	_ 20	19-21	S4	1.0	20-55 44-40 (99)	Well Graded Gravel with Clay (GW-GC) Grayish Brown (5YR3/2); Moist; Very Dense		BG, 4 ppm Test - Neg.
	_ 25	24-26	S5	1.5	40-40	Well Graded Gravel with Sand and Clay (GW-GC) Grayish Brown (5YR3/2) Wet; Dense		BG, 4 ppm Test - Neg.
	_ 30	29-31	S 6			Well Graded Gravel with Sand (GW); Brownish Gray (5YR4/1); Dense; Wet		BG, 6 ppm Test - Neg.
	_ 35	34-36	s 7			Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Dense; Wet		BG, 5 ppm Test - Neg.
į				1				

CLEAN TECH

chrya511.log

N = Number Blows to Drive $\underline{2}$ " Spoon $\underline{24}$ " with $\underline{140}$ lb. Weight Falling $\underline{30}$ " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project Ch Location Da Client Ch Oriller Mo Clevation 75 Mater Level	MWA5 11/15/94 11/15/94 4.25" HSA, CME 2 of 2 Thompson				
BGS Int-	Sample Type Rec. &No. (ft)	1	Description: Name & Symbol, Color, Moistre Relative Density or	ure Content	Remarks Air Monitor Data Dye Test, WellCo
_ 40 39-41	S8 2.0	25-19 40-7 (59)	Top foot same as S7; Poorly Sorted Sand (Sellowish Brown (10)) Wet	SP); Dark	BG, BG, 6 ppm Dye Test - Neg Well Constructi Total Depth 39 Screen 29- Sand 27- Bent. 24.5- Grout 0-24. Riser 0-29 Screen is 10 Sloscreen & Riser 2" PVC

CLEAN TECH

chrya52.log

N = Number Blows to Drive 2 "Spoon 24 "with 140 lb. Weight Falling 30 "Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

ysler Dayton Thermal Products	Boring Number	MWA 6			
ton, Ohio	Date Started	10/25/94			
ysler Corporation	Date Completed	10/25/94			
dy's of Dayton	Drilling Method	6.25" HSA, CME 75			
	Page Number	1 of 2			
Date 26.5 ft BGS 11/17/9	Logged By	Thompson			
	ysler Dayton Thermal Products ton, Ohio ysler Corporation dy's of Dayton .75 ft MSL Date 26.5 ft BGS 11/17/94	ton, Ohio Date Started ysler Corporation Date Completed dy's of Dayton Drilling Method .75 ft MSL Page Number			

Depth BGS (ft)			Rec.	SPT Result (N)	Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Air M	Remarks Conitor Data est, WellCon
_ 5	4-6	S1	1.2	8-9 11-14 (20)	Gravelly Clay with Sand (CH); Dark reddish brown (10YR2/2); Moist; Dense		BG, BG, Test - Neg.
_ 10	9-11	S2	1.3	10-15 17-16 (32)	Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Dry; Dense		BG, 3 ppm Test - Neg.
_ 15	14-16	S 3	1.8	22-25 25-56 (50)	Well Graded Gravel with Sand (GW); Brownish Gray (5YR4/1); Dry; Dense	_ BG, Dye	BG, 1 ppm Test - Neg.
_ 20	19-21	S4	1.0	7-13 17-27 (30)	Same as S3; Moist; Dense		BG, BG Test - Neg.
_ 25	24-26	S5		9-9 11-12 (20)	Well Graded Sand (SW); Brownish Gray (5YR4/1); Moist; Medium Dense		BG, 3 ppm
_ 30	29-31	S6		30-40	Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Wet; Very Dense		BG, 4 ppm Test - Neg.
_ 35	34-36	S 7			Well Graded Gravel with Sand (GW); Brownish Black (5YR2/1); Wet; Dense		BG, 4 ppm Test - Neg.

CLEAN TECH

chrya61.log

N = Number Blows to Drive $\underline{2}$ " Spoon $\underline{24}$ " with $\underline{140}$ lb. Weight Falling $\underline{30}$ " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Chrysler Dayton Thermal Products Boring Number MWA6 Project Location Dayton, Ohio 10/25/94 Date Started Chrysler Corporation 10/25/94 Date Completed Client Driller Moody's of Dayton Drilling Method 6.25" HSA, Elevation 751.75 ft MSL Page Number _ of Water Level & Date 26.5 ft BGS 11/17/94 Logged By Thompson

Depth	Sample		SPT	Description: Name & USCS Group	Remarks		
BGS (ft)	Int-			Result (N)	Symbol, Color, Moisture Content Relative Density or Consistency	Air Monitor Data Dye Test, WellCon	
_ 40	39-41	S8	2.0	15-15 20-22 (35)	Same as S7; Wet	_ BG, BG, 5 ppm Dye Test - Neg.	
						Well Construction Total Depth 40 Screen 30-40 Sand 27.5-40	
-						Bent. 24-27. Grout 0-24 Riser 0-30 Screen is 10 Slot Screen & Riser	
-						_2" PVC	
						_	
						_	
						-	

CLEAN TECH

chrya62.log

N = Number Blows to Drive 2 " Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler D	ayton Therm	al Pr	oducts	Boring Number	MWB1			
Location	Dayton, Oh	io			Date Started	10/27,	/94		
Client	Chrysler C	crporation			Date Completed	10/28/	/94		
Driller	Moody's of	Dayton			Drilling Method	6.25"	HSA,	CME	75
Elevation	744.93 ft	MSL			Page Number	1	_ of	3	
Water Lev	el & Date	19.8 ft	BGS	11/19/94	Logged By	Thom	son		

Depth BGS (ft)	Int-		Rec.		Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Remarks Air Monitor Data Dye Test, WellCon		
_ 5	4-6	S1	1.1	2-2 4-5 (6)	Clay with gravel (CH); Dark Gray (N3); Moist; Firm	_ BG, BG, BG Dye Test - Neg.		
_ ¹⁰	9-11	s 2	1.4	6-6 10-13 (16)	Well graded gravel and sand (GW); Light Brownish Gray (5YR6/1); Dry; Dense	_ BG, BG, 0.2 ppm Dye Test - Neg.		
_ 15	14-16	s 3	1.9	20-30 18-18 (48)	Well Graded Gravel with Sand and Clay (GW-GC); Moderate Reddish Brown (10YR4/6); Dry; Dense	_ BG, BG, 0.5 ppm Dye Test - Neg.		
_ 20	19-21	S4	1.5		Well Graded Gravel (GW); Grayish Brown (5YR3/2); Medium Dense; Wet	_ BG, BG, 0.2 ppm _ Dye Test - Neg.		
_ 25	24-26	S 5		30-30 30-40 (60)	Well Graded Gravel with Sand (GW); Brownish Gray (5YR4/1); Very Dense; Wet	_ BG, BG, BG Dye Test - Neg.		
_ 30	29-31	56			Well Graded Gravel (GW); Grayish Brown (5YR3/2); Medium Dense; Wet	_ BG, BG, BG Dye Test - Neg.		
_ 35	34-36	\$7		28-35 (53)	Top foot same as S6; Bottom foot Well Graded Gravel with Clay(GW-GC); Moderate Yellowish Brown (10YR4/2); Very Dense; Wet	_ BG, BG, BG Dye Test - Neg.		

CLEAN TECH

chrybll.log

N = Number Blows to Drive $\underline{2}$ " Spoon $\underline{24}$ " with $\underline{140}$ lb. Weight Falling $\underline{30}$ " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler D	ayton Thermal	Products	Boring Number	MWB1			
Location	Dayton, Oh	io		Date Started	10/27/	/94		
Client	Chrysler C	orporation		Date Completed	10/28/94			
Driller	Moody's of	Dayton	Drilling Method	6.25"	HSA,	CME 75		
Elevation	744.93 ft	MSL	Page Number	2	of	3		
Water Lev	el & Date	19.8 ft BGS	Logged By	Thomp	oson			
						_		

Depth		Sample	€ _	SPT	Description: Name & USCS Group	Remarks
BGS (ft)		Type &No.		Result (N)	Symbol, Color, Moisture Content, Relative Density or Consistency	Air Monitor Data Dye Test, WellCon
_ 40	39-41	S8	2.0	22-23 20-23 (43)	Well Graded Gravel (GW); Moderate Brown (5YR4/4); Medium Dense; Wet	_ BG, BG, BG Dye Test - Neg.
_ 45	44-46	S 9	1.4	17-48 28-18 (76)	Same as S8 with a 1 Inch Layer of Poorly Graded Sand at the Sample Bottom (SP); Brownish Black (5YR 2/1); Very Dense	_ BG, BG, BG Dye Test - Neg.
_ 50	49-51	S10	2.0	37-31 42-78 (73)	Poorly Graded Sand (SP); Medium Dark Gray (N4); Very Dense; Wet	_ BG, BG, BG Dye Test - Neg.
_ 55	54-56	S11	2.0		Well Graded Gravel with Sand (GW); Dark Gray (N3); Wet; Dense	_ BG, BG, BG _ Dye Test - Neg.
_ 60	59-61	S12		36-28 34-38 (62)	Same as S11; Very Dense	_ BG, BG, BG Dye Test - Neg.
_ 65	64-66	s13		40-40 (86)	Top foot same as S12; Bottom foot Well Graded Gravel with Dense Clay (GW-GC); Dark Gray (N3); Wet; Very Dense	_ BG, BG, Bg _ Dye Test - Neg.
_ 70	69-71	514	,	31-42 45-46 (87)	Same as S13	BG, BG, BG Dye Test - Pos. Oil from Clay Suspected Source

CLEAN TECH

chryb12.log

N = Number Blows to Drive 2 "Spoon 24 "with 140 lb. Weight Falling 30 "Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler D	ayton Thermal	Products	Boring Number	MWB1		
Location	Dayton, Oh	iio		Date Started	10/27/94		
Client	Chrysler C	crporation		Date Completed	10/28/94		
Driller	Moody's of	Dayton		Drilling Method	6.25" HSA,	CME 75	
Elevation	744.93 ft	MSL		Page Number	3 of	3	
Water Leve	l & Date	19.8 ft BGS	11/19/94	Logged By	Thompson		

Depth BGS (ft)	Int-		Rec.		Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Remarks Air Monitor Data Dye Test, WellCon
_ ⁷⁵	74-76	S15	2.0	44-140 (188)	Clay (CH); Greenish Gray (5GY6/1); Hard	_ BG, BG, BG Dye Test - Neg.
_						Well Construction Total Depth 74 Screen 64-74 Sand 61-74 Bent. 58-61 Grout 0-58 Riser 0-64
_						Screen is 10 Slot Screen & Riser 2" PVC
_						
_						

CLEAN TECH

chryb13.log

N = Number Blows to Drive $\underline{2}$ "Spoon $\underline{24}$ " with $\underline{140}$ lb. Weight Falling $\underline{30}$ "Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Client Orille: Elevat:	on Day Chi c Mod ion 75	yton, rysle ody's 1.62	Ohio r Cor of D ft MS	poratio ayton	Drilling Method Page Number	MWB2 11/16/94 11/17/94 4.25" HSA, CME 1 of 3 Thompson
Depth BGS (ft)	Int- erval		Rec.	SPT Result (N)	Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Remarks Air Monitor Data Dye Test, WellCon
_ 5	4-6	S1	1.2	10-17 18-17 (35)	Well Graded Gravel with Sand (GW); Brownish Gray (5YR4/1); Dry; Medium Dense	_ BG, BG, 1 ppm Dye Test - Neg
_ 10	9-11	S2	1.3	35-33 30-30 (63)	Same as S1; Some Silt; Very Dense	_ BG, BG, 2 ppm Dye Test - Neg
_ 15	14-16	s 3	1.5	11-18 19-18 (37)	Same as S2; Larger Grains; Moist	_ BG, BG, 2 ppm Dye Test - Neg
_ 20	19-21	S4	0.6	55- <u>50</u> 1"	Same as S3; Moist	BG, BG, 3 ppm Dye Test - Neg.
_ 25	24-26	S5		35-35 38-43 (73)	Top 0.5 ft same as S4; Bottom 1.3 ft Poorly Graded Sand (SP); Brownish Gray (5YR4/1); Dry; Very Dense	BG, 1, 7 ppm Dye Test - Neg.
_ 30	29-31	S6			Well Graded Gravel (GW); Grayish Brown (5YR3/2); Wet; Very Dense; Orange Staining	_ BG, BG, 1 ppm Dye Test - Neg.
35	34-36	S 7			Well Graded Sand with Gravel (SW); Grayish Brown (5YR3/2); Wet; Dense	_ BG, BG, 0.5 ppm Dye Test - Neg.

CLEAN TECH

chryb21.log

N = Number Blows to Drive $\frac{2}{2}$ " Spoon $\frac{24}{2}$ " with $\frac{140}{2}$ lb. Weight Falling $\frac{30}{2}$ " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler Dayton Thermal Products	Boring Number	MWB2			
Location	Dayton, Ohio	Date Started	11/16/94			
Client	Chrysler Corporation	Date Completed	11/17/94			
Driller	Moody's of Dayton	Drilling Method	4.25" HSA, CME 75			
Elevation	751.62 ft MSL	Page Number	2 of 3			
Water Lev	el & Date 26.8 ft BGS 11/19/94	Logged By	Thompson			

Depth BGS (ft)		Sample Type &No.	Rec.		Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	 Remarks Monitor Test, We	Data
_ 40	39-41	S 8	2.0	20-21 18-25 (39)	Top 1.5 ft same as S7; Bottom 0.5 ft Well Graded Gravel with Sand and Clay (GW-GC); Pale Yellowish Brown (10YR6/2); Wet; Dense	, 2 ppm, e Test -	
_ 45	44-46	S 9	2.0	25-25 30-33 (55)	Same as bottom 0.5 foot of S8	, BG, BG e Test -	
_ 50	49-51	\$10	2.0	25-27 30-30 (57)	Same as S9	, BG, BG e Test -	
_ 55	54-56	S11	2.0	25-28 25-30 (53)	Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Wet; Very Dense	, BG, BG e Test -	
_ 60	59-61	S12	2.0		Poorly Graded Sand (SP); Brownish Black (5YR2/1); Wet; Very Dense	, BG, BG = Test -	
_ 65	64-66	S13	,	32-40	Well Graded Gravel with Sand and Some Clay (SW); Brownish Black (5YR 2/1); Wet; Very Dense	, BG, BG a Test -	Pos.
_ 70	59-71	S14		35-34 40-44 (74)	Same as S13	BG, BG Test -	Pos.
	-						

CLEAN TECH

chryb22.log

N = Number Blows to Drive $\underline{2}$ " Spoon $\underline{24}$ " with $\underline{140}$ lb. Weight Falling $\underline{30}$ " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler D	ayton Thermal Pr	oducts	Boring Number	MWB2			
Location	Dayton, Oh	io		Date Started	11/16	/94		_
Client	Chrysler C	orporation		Date Completed	11/17	/94		
Driller	Moody's of	Dayton		Drilling Method	4.25"	HSA,	CME	75
Elevation	751.62 ft 1	MSL	Page Number	3	of	3	3	
Water Lev	el & Date	26.8 ft BGS	Logged By	Thom	oson			

Depth		Sample		SPT	Description: Name & USCS Group	Remarks
BGS (ft)	Int- erval			Result (N)	Symbol, Color, Moisture Content, Relative Density or Consistency	Air Monitor Data Dye Test, WellCon
			((37)		
				ļ		
_ 75	74-76	s15	2.0	50-66	Same as S14	BG, BG, BG Dye Test - Pos.
				(88)		
80	79-81	S16	2.0	40-42	Same as S15	BG, BG, BG
_				53 ~ 100 (95)		Dye Test - Pos.
85	84-86	S17	2.0	55-66	Poorly Graded Sand (SP); Dark Gray	BG, BG, BG
-				68 (134)	(N3); Wet; Very Dense	Dye Test - Pos.
90	89-91	S18	2.0	25-37	Clay with Gravel (CH); Olive	
_ ` `					Gray (5Y4/1); Very Hard	BG, BG, BG Dye Test - Pos.
_						
						Well Construction
Ì						Total Depth 89
-						_Sand 76.4-89
						Bent. 70-76.4 Grout 0-70
		1			•	Riser 0-79
_						Screen is 10 Slot Screen & Riser
			İ			2" PVC

CLEAN TECH

chryb23.log

N = Number Blows to Drive 2 " Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler D	ayton Thermal P.	Boring Number	MWB3		
Location	Dayton, Oh	iio		Date Started	11/3/94	
Client	Chrysler C	Corporation		Date Completed	11/4/94	
Driller	Moody's of	Dayton		Drilling Method	4.25" HSA,	CME 75
Elevation	752.13 ft	MSL		Page Number	1 of	2
Water Lev	el & Date	26.8 ft BGS	11/19/94	Logged By	Thompson	

Depth		Sample	<u> </u>	SPT	Description: Name & USCS Group	Remarks
BGS (ft)	Int- erval			Result (N)	Symbol, Color, Moisture Content, Relative Density or Consistency	Air Monitor Data Dye Test, WellCon
_ 5	4-6	s1	0.9		Well Graded Gravel with Sand and Silt (GW-GM); Light Brownish Gray (5YR6/1); Dry; Dense	BG, BG, 0.2 ppm Dye Test - Neg.
_ 10	9-11	\$ 2	1.2	25-20 14-13 (34)	Well Graded Gravel with Sand (GW); Brownish Gray (5YR4/1); Dry; Dense	_ BG, BG, 0.5 ppm Dye Test - Neg.
_ 15	14-16	s3	1.6	15-17 28-18 (45)	Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Moist; Dense	_ BG, BG, 0.5 ppm Dye Test - Neg.
_ 20	19-21	S4		37-35 (67)	Top 0.5 ft same as S3; Bottom 1.3 ft Clay with gravel (CH); Dark Greenish Gray (5GY4/1); Moist; Hard; Orange Staining	BG, BG, 2 ppm Dye Test - Neg.
25	24-26	S5		27-22	Well Graded Gravel with Sand (GW); Brownish Gray (5YR4/1); Moist; Very Dense; Orange Staining	BG, BG, 5 ppm Dye Test - Neg.
30	29-31	56		17-21 28-27 (49)	Same as S5; Wet; Dense	_ BG, BG, 8 ppm Dye Test - Neg.
35	34-36	S7		37-36	Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Wet; Very Dense	BG, BG, 15 ppm Dye Test - Neg.

CLEAN TECH

chryb31.log

N = Number Blows to Drive $\underline{2}$ "Spoon $\underline{24}$ " with $\underline{140}$ lb. Weight Falling $\underline{30}$ " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler I	ayton Thermal	Products	Boring Number	MWB3			
Location	Dayton, Oh	nio		Date Started	11/3/9	94		_
Client	Chrysler C	Corporation		Date Completed		_		
Driller	Moody's of	Dayton		Drilling Method	4.25"	HSA,	CME 75	5
Elevation	752.13 ft	MSL		Page Number	2	of	2	_
Water Lev	el & Date	26.8 ft BGS	11/19/94	Logged By	Thom	oson		_

Depth		Sample		SPT	Description: Name & USCS Group	Remarks
BGS (ft)	Int- erval	Type &No.	Rec. (ft)	Result (N)	Symbol, Color, Moisture Content, Relative Density or Consistency	Air Monitor Data Dye Test, WellCon
_ 40	39-41	S 8	1.8		Same as S7; More Gravel	BG, BG, 5 ppm
45	44-46	S 9	1 0	27-35 (57) 40-40	5	Dye Test - Pos.
_ 45	44-40	39	1.8	50-60 (90)	Same as S8	BG, BG, 20 ppm Dye Test - Neg.
_ 50	49-51	S10	1.2	32-30 34-35 (64)	Same as S9	BG, 0.4, 5 ppm Dye Test - Neg.
_ 55	54-56	S11		30-34 (50)	Top 0.5 ft Sandy Clay (CH); Moderate Yellowish Brown (10YR5/4); Bottom 0.7 ft Clay (CH); Light Olive Gray (5Y6/1); Wet; Hard	_ BG, BG, 2 ppm Dye Test - Pos.
_ 60	59-61	S12			Clay (CH); Olive Gray (5Y4/1); Moist; Very Hard	_ BG, 10 ppm, BG _ Dye Test - Neg.
-						Well Construction Total Depth 60 Screen 46-56 Sand 43-60
-						Bent. 38-43 Grout 0-38 Riser 0-46 Screen is 10 Slot Screen & Riser 2"PVC

CLEAN TECH

chryb32.log

N = Number Blows to Drive $\underline{2}$ " Spoon $\underline{24}$ " with $\underline{140}$ lb. Weight Falling $\underline{30}$ " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler !	Dayton Therm	al Products	Boring Number	MWB4 10/31/94 11/2/94			
Location	Dayton, Ol	nio		Date Started				
Client	Chrysler (Corporation		Date Completed				
Driller	Moody's of	f Dayton		Drilling Method	6.25"	HSA,	CME 75	
Elevation	751.64 ft	MSL		-	Page Number	1	of	3
Water Lev	el & Date	26.9 ft BG	S 11/	19/94	Logged By	Tho	mpson	

Depth BGS (ft)		Sample Type &No.	Rec.	SPT Result (N)	Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	•	Remarks Monitor Data Lest, WellCon
_ 5	4-6	S1	1.0	8-10 15-18 (25)	Well Graded Gravel with Silt and Clay (GW-GM); Light Brownish Gray (5YR6/1); Dry; Medium Dense		BG, BG Test - Neg.
_ 10	9-11	S2	0.9	10-13 26-30 (39)	Same as S1		BG, BG Test - Neg.
_ 15	14-16	s 3	0.8	20-20 18-18 (38)	Same as S2		BG, 0.5 ppm Test - Neg.
_ 20	19-21	S4	2.0		Well Graded Sand with Silt and Gravel (SW-SM); Brownish Gray (5YR4/1); Dry; Dense		BG, 1 ppm Test - Neg.
_ 25	24-26	S 5	0.5		Same as S4; Very Dense	- BG, Dye	BG, 1 ppm Test - Neg.
_ 30	29-31	S6		31-40	Well Graded Gravel with Sand (GW); Brownish Gray (5YR4/1); Wet; Very Dense		BG, BG Test - Neg.
_ 35 3	34-36	s 7	j	48-53	Well Graded Gravel with Clay (GW-GC) Pale Brown (5YR5/2); Wet; Very Dense		BG, BG Test - Neg.

CLEAN TECH

chryb41.log

N = Number Blows to Drive 2 " Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler I	ayton Thermal Pr	oducts	Boring Number	MWB4		
Location	Dayton, Oh	nio		Date Started	10/31/94		
Client	Chrysler C	orporation	Date Completed	11/2/94			
Driller	Moody's of	Dayton	Drilling Method	6.25" HSA,	CME 75		
Elevation	751.64 ft	MSL		Page Number	_2 of	3	
Water Lev	el & Date	26.9 ft BGS	11/19/94	Logged By	Thompson		

Depth		Sample	9	SPT	Description: Name & USCS Group	Remarks
BGS (ft)		Type	Rec.		Symbol, Color, Moisture Content, Relative Density or Consistency	Air Monitor Data Dye Test, WellCon
			!			
_ 40	39-41	S8	2.0	26-31 43-44 (74)	Same as S7; Very Dense	BG, BG, BG Dye Test - Neg.
_ 45	44-46	s 9	2.0	43-42 42-56 (84)	Well Graded Gravel with Sand and Clay (GW-GC); Pale Brown (5YR5/2); Wet; Very Dense	BG, BG, BG Dye Test - Neg.
_ 50	49-51	S10	2.0	34-35 44-48 (79)	Well Graded Sand with Clay (SW-SC); Pale Brown (5YR5/2); Wet; Very Dense	BG, BG, BG Dye Test - Neg.
_ 55	54-56	sıı	2.0	44-50	Well Graded Gravel with Clay (GW-GC) Pale Brown (5YR5/2); Wet; Very Dense	BG, BG, BG Dye Test - Neg.
_ 60	59-61	512	2.0	57-60 65-70 (125)	Same as S11	_ BG, BG, BG Dye Test - Neg.
_ 65	64-66	S13		44-49 48-56 (97)	Same as S12	BG, BG, BG Dye Test - Neg.
_ 70	59-71	S14		32-55 60-64 (115)	Same as S13	BG, BG, BG Dye Test - Neg.
]					,,

CLEAN TECH

chryb42.log

N = Number Blows to Drive 2 "Spoon 24 "with 140 lb. Weight Falling 30 "Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

	el & Date		BGS	11/19/94	Logged By	Thom	pson	
Elevation	751.64 ft	MSL			Page Number	3	of	3
Driller	Moody's of	f Dayton			Drilling Method	6.25"	HSA,	CME 75
Client	Chrysler (Corporation	on			11/2/		
Location	Dayton, Ol	nio			Date Started	10/31		
Project	Chrysler I	Dayton The	ermal	Products	Boring Number _	MWB 4		

Depth BGS (ft)	Int-		Rec.		Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Remarks Air Monitor Data Dye Test, WellCon
_ ⁷⁵	74-76	S15	2.0	90-82 (172)	Same as S14	_ BG, BG, BG Dye Test - Neg.
					*Augers began walking at approximately 70-75 ft BGS and could not be advanced any further. The decision was made to screen the well at 25-35 ft BGS.	
_						Well Construction Sand 54-74 Bent. 49-54 Sand 38-49
_						Bent. 36-38 Sand 35-36 Screen 25-35 Sand 22.8-35 Bent. 20.4-22.8 Grout 0-20.4 Riser 0-25
-						_Screen is 10 Slot Screen & Riser 2" PVC
_						_

CLEAN TECH

chryb43.log

N = Number Blows to Drive 2 "Spoon 24 "with 140 lb. Weight Falling 30 "Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Boring Number MWB5 Chrysler Dayton Thermal Products Project Location Dayton, Ohio Date Started 11/7/94 11/8/94 Date Completed Chrysler Corporation Client Moody's of Dayton 4.25" HSA, CME Drilling Method Driller 1 Elevation 750.73 ft MSL Page Number of Water Level & Date 26.8 ft BGS 11/15/94 Logged By Thompson

Depth		Sample	3	SPT	Description: Name & USCS Group	•	Remarks
BGS	Int-	Type	Rec.	t .	Symbol, Color, Moisture Content,		onitor Data
(ft)	erval	&No.	(ft)	(N)	Relative Density or Consistency	Dye T	est, WellCon
- 5	4-6	S1		8-12 13-12 (25)	Sandy Clay (CL); Dark Reddish Brown (10YR3/4); Dry; Very Stiff	Dye	BG, BG Test - Neg.
_ 10	9-11	S2	1.1	10-12 12-16 (24)	Well Graded Gravel with Silt (GW-GM) Light Brownish Gray (5YR6/1); Dry; Medium Dense	_ BG, Dye	BG, 0.2 ppm Test - Neg.
_ ¹⁵	14-16	S3	0.7	18-57 (75)	Same as S2; Larger Gravel		BG, BG Test - Neg.
_ 20	19-21	S4	1.1	50/3"	Top 0.5 ft same as S3; Bottom 0.5 ft Well Graded Sand (SW); Dark Reddish Brown (10YR3/4); Dry; Very Dense		0.2ppm, BG Test - Neg.
	24-26	S5			Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Wet; Dense		BG, 0.5 ppm Test - Neg.
-	29-31	S6			Well Graded Sand (SW); Brownish Gray (5YR4/1); Wet; Dense		BG, 0.2 ppm Test - Neg.
_ 35	34-36	S7	,	25-25	Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Wet; Very Dense		BG, 0.2 ppm Test - Neg.

CLEAN TECH

chryb51.log

N = Number Blows to Drive 2 "Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

lient	on Day	yton, rysle ody's	Ohio r Cor of D	poratio ayton		ing Number e Started e Completed lling Method	
levat: ater 1	ion 7	50.73 & Dat	e 2	SL 6.8 ft		e Number	2 of 3 Thompson
Depth BGS (ft)			Rec.		Description: Name & USC Symbol, Color, Moisture Relative Density or Cons	Content,	Remarks Air Monitor Data Dye Test, WellCo
_ 40	39-41	S8	1.2	35-53 75 (128)	Well Graded Gravel with Brownish Gray (5YR4/1); Dense		_ BG, BG, BG Dye Test - Pos
45	44-46	S 9	2.0	33-35 50-50 (85)	Well Graded Sand with Gr Brownish Gray (5YR4/1); Dense		_ BG, BG, BG Dye Test - Neg
_ 50	49-51	S10	2.0	31-30 28-36 (58)	Well Graded Gravel with Brownish Gray (5YR4/1); Dense		_ BG, BG, BG _ Dye Test - Pos
. 55	54-56	S11	1.5	35-35 54-65 (89)	Same as S10; Larger Grave	el	- BG, BG, BG - Dye Test - Pos
60	59-61	S 12	1.6	60-60 50-55 (110)	Same as S11		_ BG, BG, BG Dye Test - Pos
65	64-66	s13	1.5	50-40 50-60 (90)	Same as S12; Some Clay		_ BG, BG, BG _ Dye Test - Pos
70	69-71	S14	1.3	55-53 68-73 (121)	Same as S13		_ BG, BG, BG Dye Test - Pos

CLEAN TECH

chryb52.log

N = Number Blows to Drive 2 " Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

lient rille: levat:	on Da Ch r Mo ion 75	yton, rysle ody's 0.73	Ohio r Cor of D ft MS	poratio ayton	Drilling Method Page Number	
Depth BGS (ft)	Int-		Rec.		Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Remarks Air Monitor Data Dye Test, WellCon
_ 75	74-76	s15	1.5	40-58 53-60 (111)	Same as S14	_ BG, BG, BG _ Dye Test - Pos.
_ 80	79-81	S16	1.6	40-50 50-50 (100)	Same as S15	BG, BG, BG Dye Test - Pos
_ 85	84-86	s17	1.4	50-65 50-50 (115)	Same as S16	BG, BG, BG Dye Test - Pos
_ 90	89-91	S18	2.0		Top 1.5 ft Well Graded Sand with Clay (SW-SC); Dark Greenish Gray (5GY 4/1); Bottom 0.5 ft Clay (CH); Dark Greenish Gray (5GY4/1); Wet; Very Dense	BG, BG, BG Dye Test - Pos
-						_

CLEAN TECH

chryb53.log

Well Construction

80-90

75.5-90

70.5-75.5

Total Depth 90

Screen is 10 Slot Screen & Riser

Screen

Sand Bent.

Grout Riser

2" PVC

N = Number Blows to Drive 2 " Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Note: Positive Dye Tests Likely Result of Oil in Clay Units

location control contr	on Day Chi r Mod ion 75	yton, rysle: ody's 1.37	Ohio r Cor of D ft MS	poratio ayton	Drilling Method Page Number			
Depth BGS (ft)			Rec.	SPT Result (N)	Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Remarks Air Monitor Data Dye Test, WellCon		
_ 5	4-6	S1	1.2	15-16 20-25 (36)	Well Graded Gravel with Silt and Sand (GW-GM); Pale Yellowish Brown (10YR6/2); Medium Dense	BG, BG, 0.5 ppr Dye Test - Neg		
_ 10	9-11	S 2	1.5	25-25 16-15 (41)	Well Graded Gravel with Sand (GW); Pale Yellowish Brown (10YR6/2); Dry; Medium Dense	BG, BG, 2 ppm Dye Test - Neg		
_ 15	14-16	s 3	1.4	10-11 11-12 (22)	Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Moist; Medium Dense	BG, BG, 1 ppm Dye Test - Neg		
_ 20	19-21	S4	1.8	21-28 26-22 (54)	Well Graded Gravel with Sand and Silt (GW-GM); Brownish Gray (5YR 4/1); Dry; Very Dense	BG, BG, 5 ppm Dye Test - Neg		
25	24-26	S 5	1.8	19-21	Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Dry; Medium Dense	BG, 2, 14 ppm Dye Test - Neg		
_ 30	29-31	S 6			Well Graded Gravel with Sand and Some Clay (GW); Dark Yellowish Brown (10YR4/2); Wet; Very Dense	BG, 2, 8 ppm Dye Test - Neg		
35	34-36	S 7	,	18-25	Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Wet; Medium Dense; Orange Staining	- BG, 3, 5 ppm No Dye Test		

CLEAN TECH

chryb61.log

N = Number Blows to Drive 2 "Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project	Chrysler	Dayton Thermal Pr	oducts	Boring Number	MWB6 11/9/94 11/10/94		
	Dayton, O	hio		Date Started			
Client	Chrysler	Corporation		Date Completed			
Driller	Moody's o	f Dayton		Drilling Method	4.25" HSA,	CME 75	
Elevation	751.37 ft	MSL		Page Number	2 of	2	
Water Lev	el & Date	25.9 ft BGS	11/18/94	Logged By	Thompson		

Depth BGS (ft)	Int- Type Rec. Resul			Result	Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Remarks Air Monitor Data Dye Test, WellCon			
_ 40	39-41	S8	1.4	26-25 40-50 (65)	Well Graded Sand with Gravel (SW); Brownish Gray (5YR4/1); Wet; Very Dense	BG, 1, 5 ppm Dye Test - Pos.			
_ ⁴⁵	44-46	S 9	1.2	20-33 48-56 (81)	Clay with Gravel (CH); Olive Gray (5Y4/1); Moist; Very Dense	BG, 0.5, 2 ppm Dye Test - Pos.			
_ 50	49-51	S10	1.0	38-47 100 (147)	Well Graded Sand and Gravel with Some Clay (SW); Brownish Gray (5YR4/1); Wet; Very Dense	_ BG, 2 ppm, BG Dye Test - Neg.			
_ 55	54-56	S11		31-23 27-58 (50)	Same as S10	_ BG, 1 ppm, BG Dye Test - Neg.			
-						Well Construction			
-						Total Depth 54 Bent. 47-54 Sand 46-47 Screen 36-46 Sand 34-46 Bent. 32-34			
-						Grout 0-32 Screen is 10 Slot Screen & Riser 2" PVC			

CLEAN TECH

chryb62.log

N = Number Blows to Drive 2 " Spoon 24 " with 140 lb. Weight Falling 30 " Air Monitoring Data Shown as PID Readings in Breathing Zone, Borehole, and Split Spoon Sample Respectively.

Project Location Client Driller Elevation	Chr Moo Lon 745	Boring Number Date Started Date Completed Drilling Method Page Number Logged By	MWC1 10/18/94 10/25/94 Cable Tool BE22-W 1 of 2 Newsom				
	Int-		Rec.	SPT Result (N)	Description: Name & U Symbol, Color, Moistur Relative Density or Co	re Content,	Remarks Air Monitor Data Dye Test, WellCon
_ 10		NA	NA.	NA	Well Graded Gravel and Coarse Grain Sand (GW-fine sand, silt, and cor Sheen.	-SW); Trace	_ BG, BG, BG
_ 20		NA	NA	NA	Same as above		_ BG, BG, BG
_ 30		NA	NA.	NA	Same as above		_ BG, BG, BG
_ 40		NA	NA	NA	Same as above		_ BG, BG, BG
_ 50		NA	NA	NA.	Same as above		_ BG, BG, BG
_ 60		NA	NA.	NA	Same as above		_ BG, BG, BG
70		NA	NA	NA	Same as above		
- 76					Soft to Firm Gray Silt Medium to Fine Grain So Gravel (CL); No Odor o	and, Trace	_ BG, BG, BG Soft Clay 76 ft Firm Clay 79 ft

CLEAN TECH

chrycll.log

Project	Chrysler D	ayton Therm	nal Prod	ducts	Boring Number	MWC1			
Location	Dayton, Oh			Date Started	10/18/94				
	Chrysler C	Date Completed	10/25/94						
Driller	Moody's of	Dayton			Drilling Method	Cable	Tool	BE22-W	
Elevation	745 ft MSL				Page Number	2	of	2	
Water Lev	el & Date	24.5 ft BC	S	11/19/94	Logged By		News	om	

Depth		Sample		SPT	Description: Name & USCS Group	Remarks
BGS (ft)	Int- erval			Result (N)	Symbol, Color, Moisture Content, Relative Density or Consistency	Air Monitor Data Dye Test, WellCon
(10)	ervar	ano.	(10)	(N)	Relative Density of Consistency	Dye lest, Wellcon
				į		
_ 80	81-83	S1	1.0	NA	Silty Clay with Mading to Fine Crain	- PC PC PC
	91-92	31	1.0	NA.	Silty Clay with Medium to Fine Grain Sand, Trace Gravel (CL); Medium to	- bG, bG, bG
					Light Gray (N5-N7)	
90	83-96	NA	NA.	NA	Same as S1, but with a Dark Oil	- BG, BG, 5 ppm
-				1110	Sheen in Bailed Water and Cuttings	oc, cc, c pp
	96-98	\$2	1.1	NA	Fine to Coarse Grain Sand with Silt,	- BG BG O 6 nnm
į					Trace Gravel (SW); Dark Gray (N7)	50, 50, 0:0 ppm
_ 100						
	104-	s3	1.0	NA	Same as S2	- Dye Test - Neg.
	106					
110	110-	S4	2.0	NA	Same as S3	- Dye Test - Neg.
	112	Ì]		
	į	1	į			
-	1		}			Well Construction
	}					Total Depth 112
			1			Screen 102-112 Sand 100-112
_		1				Sand 100-112 Bent. 96-100
		- 1				Grout 0-96
		ł				8" casing 0-81 Riser 0-102
		j				
.						Screen is 10 Slot Screen & Riser
	İ	}	Ì	1		2" PVC
				-		
			1	1		

CLEAN TECH

chryc12.log

Project	Chrysler D	ayton Thermal Pr	oducts	Boring Number	MWC2			
Location	Dayton, Oh	iio		Date Started	10/18/			
Client	Chrysler C	crporation		Date Completed	10/25/	/94		
Driller	Moody's of	Dayton		Drilling Method	Cable	Tool	BE22-W	
Elevation	751.60 ft	MSL		Page Number	1	of	3	
Water Lev	el & Date	30.2 ft BGS	11/19/24	Logged By	Newsom			

Depth BGS (ft)	Int- erval		Rec.	SPT Result (N)	Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Remar Air Monito Dye Test,	r Data
_ 10		NA	NA	NA	Well Graded Gravel and Medium to Coarse Grain Sand (GW-SW); Trace Fine Sand, Silt, and Clay. No Odor or Sheen.	_ BG, BG,	BG
_ 20		NA	NA	NA	Same as above	_ BG, BG,	BG
_ 30		NA	NA	NA	Same as above	_ BG, BG,	3 ppm
_ 40		NA	NA	NA .	Same as above	- BG, BG, 1	BG
_ 50		NA	NA	NA	Same as above	- BG, BG, 1	BG
_ 60		NA	NA	NA	Same as above	- BG, BG, I	3G
- ⁷⁰		NA	NA	NA	Same as above	- BG, BG, I	3G

CLEAN TECH

chryc21.log

Project	Chrysler Dayton Thermal Products		Boring Number	MWC2		
Location	Dayton, Ohio		Date Started			
Client	Chrysler Corporation		Date Completed	10/25/94		
Driller	Moody's of Dayton		Drilling Method	Cable Tool	BE22-W	
Elevation	751.60 ft MSL		Page Number	2 of	3	
Water Lev	el & Date 24.5 ft BGS 11/1	9/94	Logged By	Newsom		

Depth BGS		Sample Type		SPT	Description: Name & USCS Group Symbol, Color, Moisture Content,	Ai	r M		arks or Data
(ft)	erval			(N)	Relative Density or Consistency	1			WellCon
- 80		NA	NA	NA	Same as above				
_ 90	85-87	S1	1.0	NA	Silt and Clay with Trace Fine to Coarse Grain Sand (CL); Medium Gray (N5)	-	BG,	BG,	9 ppm
	87 - 102	NA	NA.	NA	Same as Sl with a Dark Oil Sheen in Bailed Water and Cuttings	-	BG,	BG,	BG
_ 100				Ì					
	107-	S 2	1.5	NA	Fine to Coarse Grain Sand, Silt, and Gravel, with Trace Clay (SW); Gray (N5)				BG - Neg.
_ 110	109- 114	NA	NA	NA	Same as S2; No Trace Clay	-	BG,	BG,	BG
120	114-	S3	2.0		Fine to Coarse Grain Sand and Silt with Trace Gravel and Clay (SW)			BG, Test	BG - Neg.
	116-	NA	NA		Fine to Coarse Grain Sand, Silt, and Gravel (SW); Oil Sheen Noted in the Water and Cuttings	- 1	BG,	BG,	0.6 ppm
-	120-	S4	2.0	NA	Same as S3			BG, Test	BG - Neg.
-									

CLEAN TECH

chryc22.log

Project	Chrysler I	Dayton The	rmal P	roducts	Boring Number _	MWC2			
Location	Dayton, Oh	nio			Date Started	10/18/94			
Client	Chrysler C	Date Completed	10/25/94						
Driller	Moody's of	Dayton			Drilling Method	Cable	Tool	BE22-W	
Elevation	751.60 ft	MSL			Page Number	3	of	3	
Water Lev	el & Date	24.5 ft	BGS	11/19/94	Logged By	News	om		

CLEAN TECH

chryc23.log

Project	Chrysler Da	yton Ther	mal Pr	oducts	Boring Number _	MWC3			
Location	Dayton, Ohi	0			Date Started	11/9/	94		
Client	Chrysler Co		1		Date Completed	11/17	/94		
Driller	Moody's of	Dayton			Drilling Method	Cable	Tool	BE22-W	
Elevation	752.15 ft M	SL			Page Number	1	of	2	
Water Lev	el & Date	26.8 ft B	GS	11/19/24	Logged By	News	mc		

Depth BGS (ft)		Sample Type &No.	Rec.	SPT Result (N)	Description: Name & USCS Group Symbol, Color, Moisture Content, Relative Density or Consistency	Remark Air Monitor Dye Test, We		or Data
_ 10		NA	NA	NA	Well Graded Gravel and Fine to Coarse Grain Sand with Silt (GW-SW); No Odor or Sheen.	_ B0	G, BG,	BG
_ 20	19	NA	NA	NA	Silty Clay with Sand and Gravel (CL); Medium Dark Gray (N4); Dark Brown Oil Sheen in Bailed Water & Cuttings	_ BG	G, BG,	BG
_ 30	26	NA	NA.	NA	Well Graded Gravel with Fine to Coarse Grain Sand with Silt (GW); No Odor or Sheen.	→ BG	, BG,	BG
_ 40		NA	NA	NA	Same as above	- BG	, BG,	0.4 ppm
_ 50								
60	57-59	S1	2.0	NA	Silt and Clay with Trace Fine Grain Sand (CL); Medium Gray (N5); No Odor or Sheen.	- BG	, BG,	BG
	59-69	NA	NA	NA	Same as S1	_ BG	, BG,	BG
_ 70	70-72	S2	1.5		Fine to Coarse Grain Sand and Gravel with Silt and Trace Clay (SW); Medium Gray (N5); No Odor or Sheen.	- BG	, BG,	BG

CLEAN TECH

chryc31.log

location to the control of the contr	cation Dayton, Ohio Date Startient Chrysler Corporation Date Composition Drilling Page Number Level & Date 26.8 ft BGS 11/19/94 Logged By						ted 11/9/94 Dleted 11/17/94 Method Cable Tool BE22- Der 2 of 2	
Depth BGS (ft)	Int- erval		Rec.	SPT Result (N)	Description: Name & USCS Symbol, Color, Moisture Co Relative Density or Consis	ntent,	Remarks Air Monitor Data Dye Test, WellCo	
_ ⁷⁵	72-76		NA	NA	Same as S2		BG, BG, BG - Dye Test - Neg	
80	76-78 78-82	S3 NA	2.0 NA	NA NA	Same as S2 Well Graded Gravel and Med	ium to	BG, BG, BG - Dye Test - Neg BG, BG, BG	
					Coarse Grain Sand, Silt, and Clay (GW); Medium Gray (N5) or Sheen.		Dye Test - Neg	
-	82-84	S4	2.0	NA	Fine to Coarse Grain Sand a with Silt and Trace Clay (SMedium Gray (N5); No Odor of	SW);	- BG, BG, BG Dye Test - Neg	
-							Well Constructi	
-							Screen 74-84 Sand 72-84 Bent. 69-72 Grout 0-69	
							12" casing 0-57 8" casing 0-58 Riser 0-74	
-						į	Screen is 10 Slo Screen & Riser	

CLEAN TECH

chryc32.log

2" PVC

ATTACHMENT L

Groundwater Sample Collection Procedures

Chrysler Corporation

Dayton Thermal Products Plant

1600 Webster Street

Dayton, Ohio 45404

General Procedures for Groundwater Sampling Chrysler Corporation

Dayton Thermal Products Plant

- The well cover was unlocked and carefully removed to avoid introducing
 foreign material into the well. The well was immediately monitored for
 organic vapors during the first groundwater sampling round using a PID.
 Wells having PID readings above the ambient air background level were
 allowed to vent until levels reached background before proceeding with
 purging;
- The static water level (SWL) was determined using an interface probe.
 The presence of any LNAPL was determined. The SWL was recorded from a reference point on the PVC well casings;
- The well depth was obtained from well construction records and confirmed by lowering the interface probe to the bottom of the well. The presence of any DNAPL was determined. The total depth of the well from the reference point was recorded. Water level data was collected from all the wells during as short a time period as possible to minimize the effects of short term water level fluctuations;
- The volume of water in the well was calculated based on the water level measurements below top of casing, total well depth, and the well diameter;
- The well was purged using an air bladder pump. Materials of construction were Teflon or stainless steel, suitable for collection of samples for VOC and metals analysis. Three wellbore volumes of water were removed from the well and containerized near the well in preparation for disposal. Temperature, pH, dissolved oxygen and conductivity were measured following the removal of three consecutive well volumes of water. All information collected during well purging and sampling was recorded;

- Groundwater samples were collected following the completion of well purging. Well sampling was performed using the air bladder pump. Samples were collected into appropriate containers supplied and prepared by the laboratory performing the analyses. Sample bottles were filled directly from the pump discharge tubing. Dissolved metals analysis was performed using field filtered samples. A new 0.45 micron disposable filter was used for each sample;
- All sample bottles were labeled in the field using a waterproof permanent marker. The information on the labels included: site name, sample and project number, date/time, sampler's initials, preservatives added (if any), and analysis to be performed;
- Samples were placed on ice in coolers for transport to the analytical laboratory. Samples were logged using chain of custody documentation provided by the laboratory performing the analysis, Canton Analytical Laboratory, Inc. of Plymouth, Michigan. The samples were delivered by overnight courier to Canton Analytical Laboratory, Inc. under chain of custody control;
- The samples were shipped and received at the laboratory within EPA approved standard holding times for each analysis.

ATTACHMENT O

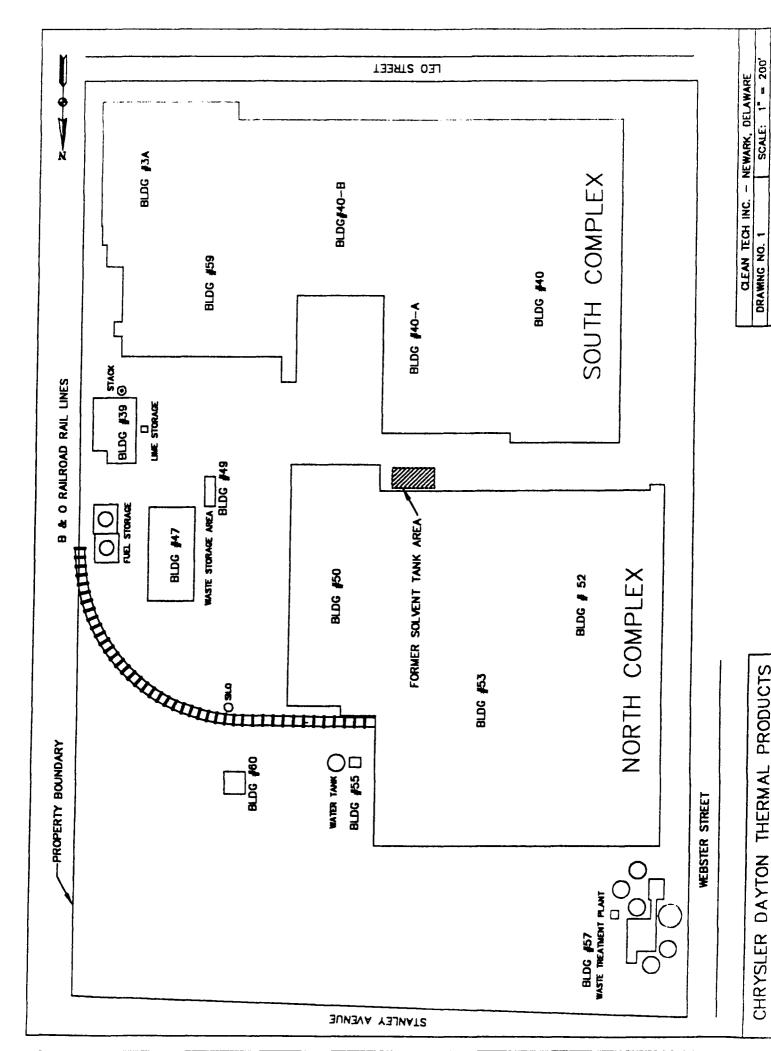
Quality Control Procedures for Groundwater Sampling
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404

Quality Control Procedures for Groundwater Samples Chrysler Corporation

Dayton Thermal Products Plant

- Sample collection was completed using new disposable latex gloves, new disposable filters, laboratory prepared glassware, and thorough decontamination of the sampling equipment. Decontamination of the equipment was accomplished by washing all sampler parts using a phosphate-free detergent followed by a potable water rinse. The equipment was then rinsed using deionized water and allowed to air dry;
- Samples were labeled to show site name, sample and project number, date/time, sampler's initials, preservatives added (if any), and analysis to be performed;
- Samples were placed on ice in coolers for transport to the analytical laboratory. Samples were logged using chain of custody documentation provided by the laboratory performing the analysis, Canton Analytical Laboratory, Inc. of Plymouth, Michigan. The samples were delivered by overnight courier to Canton Analytical Laboratory, Inc. under chain of custody control;
- One VOC and one metals duplicate were collected and analyzed;
- One equipment blank was collected and analyzed for VOCs;
- One trip blank was analyzed for VOCs;
- The samples were shipped and received at the laboratory within the EPA standard holding times for each analysis.

DRAWING 1

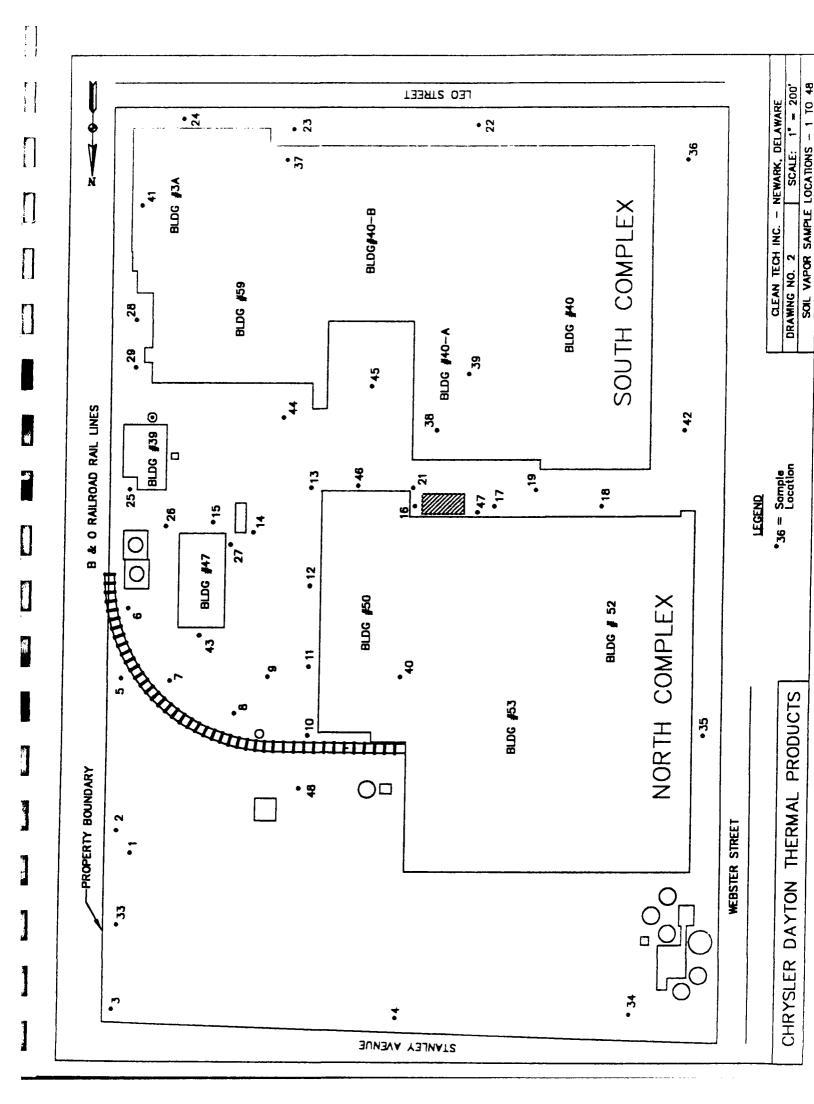

Site Plan

Chrysler Corporation

Dayton Thermal Products Plant

1600 Webster Street

Dayton, Ohio 45404


横

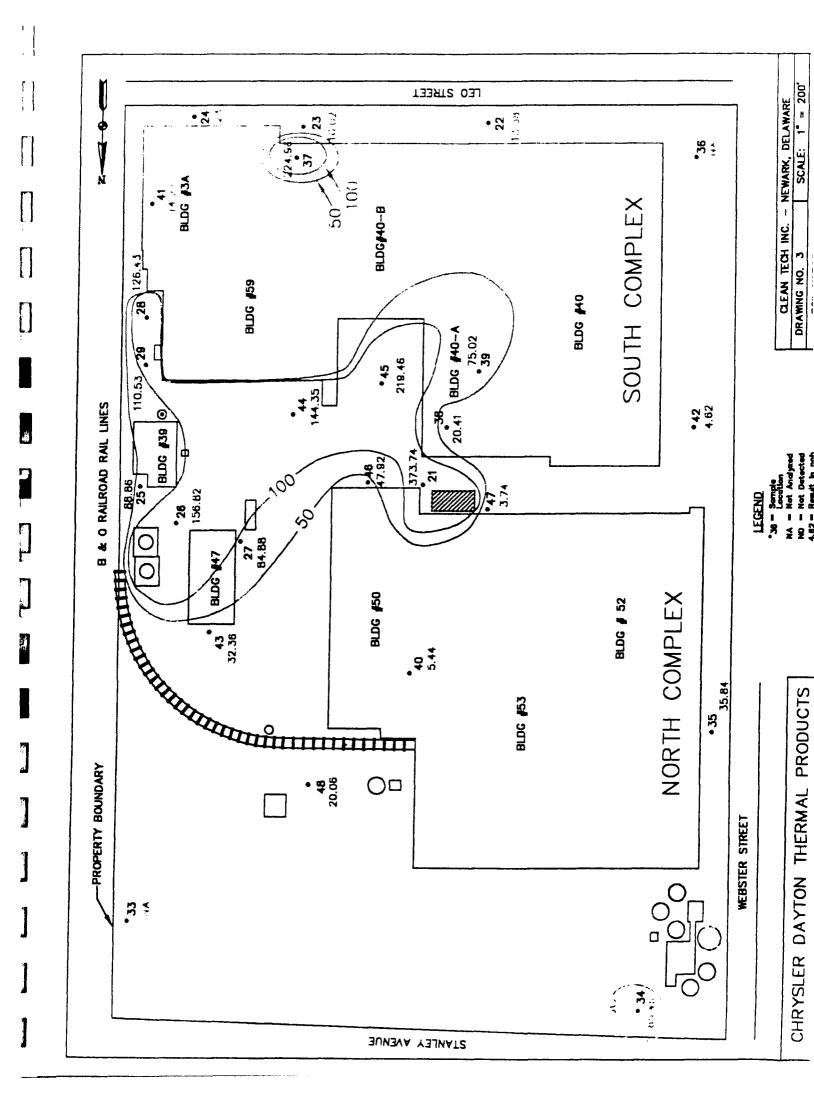
CHRYSLER DAYTON THERMAL PRODUCTS

DRAWING 2 Soil Vapor Survey Sample Locations 1 Through 48 Chrysler Corporation Dayton Thermal Products Plant

1600 Webster Street

Dayton, Ohio 45404

DRAWING 3 Soil Vapor Survey

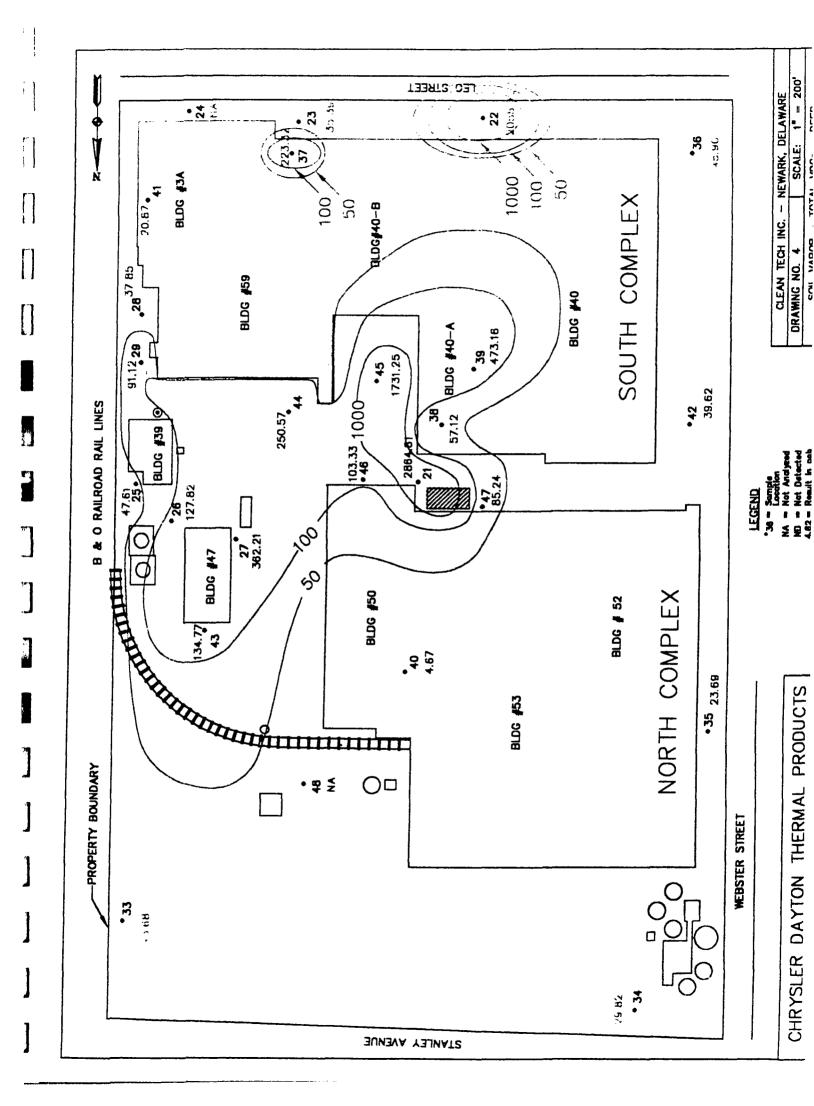

Total VOCs in Shallow Vadose Zone

Chrysler Corporation

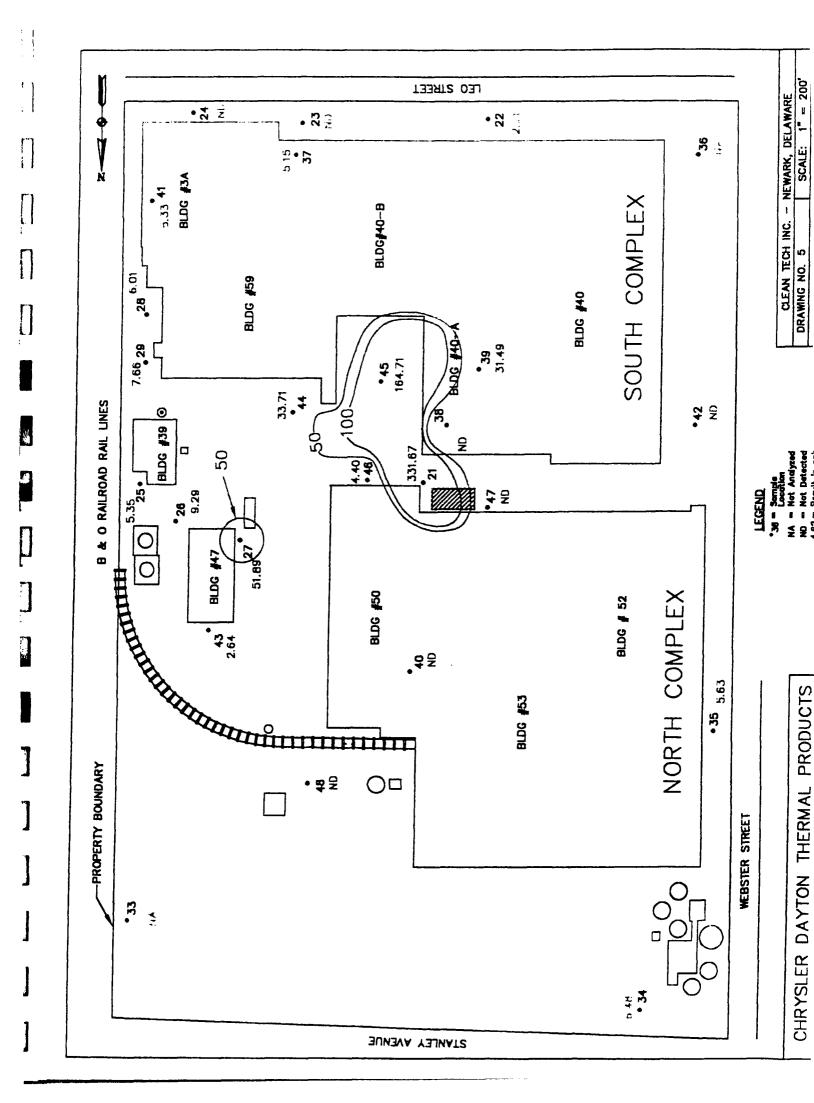
Dayton Thermal Products Plant

1600 Webster Street

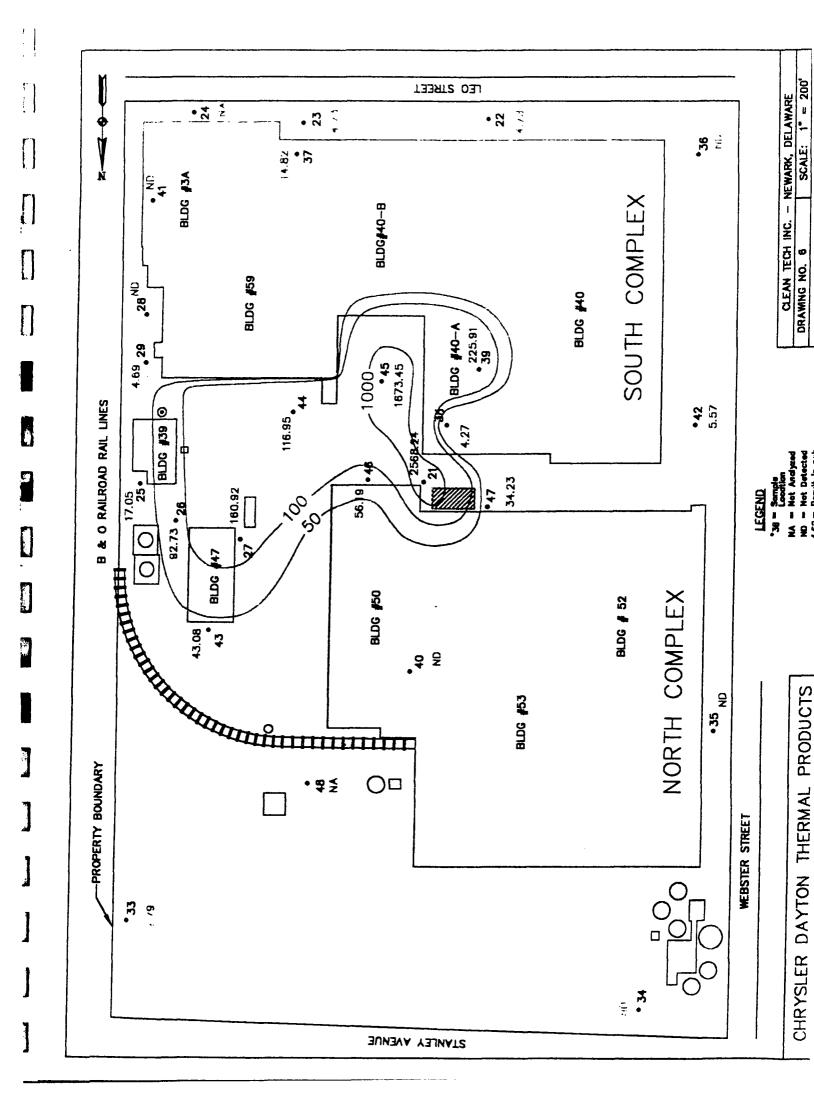
Dayton, Ohio 45404

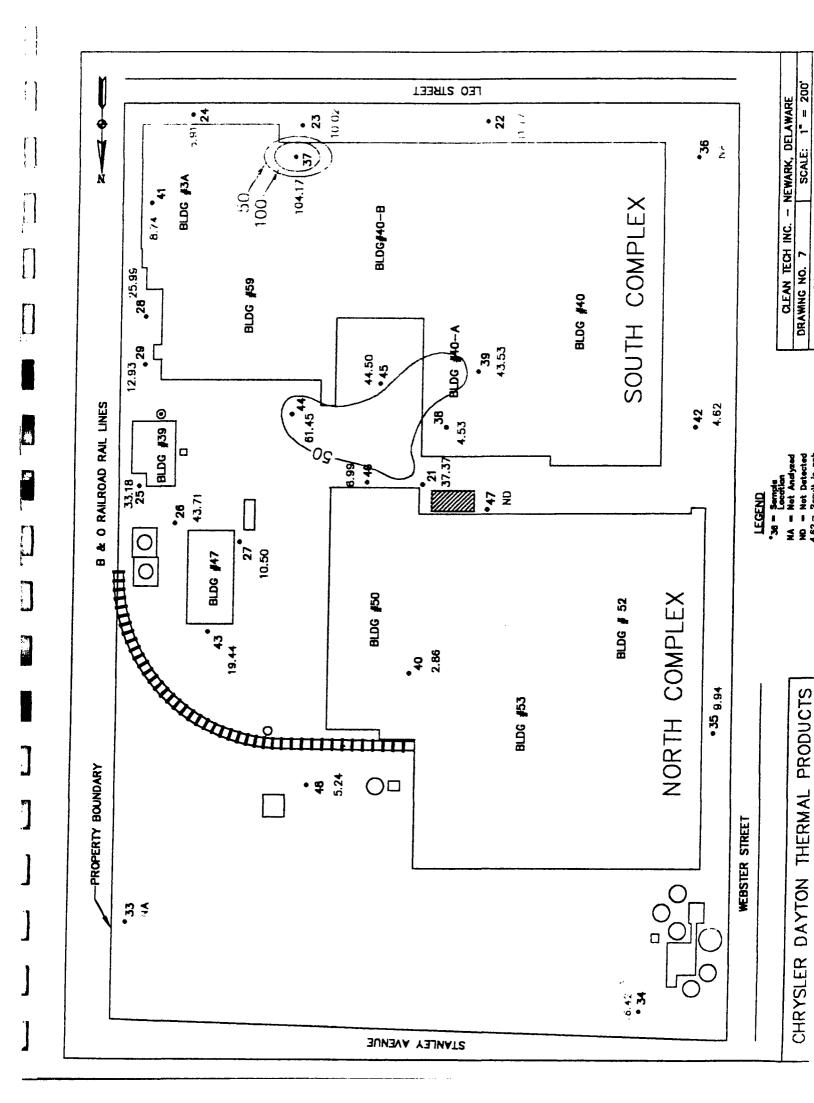


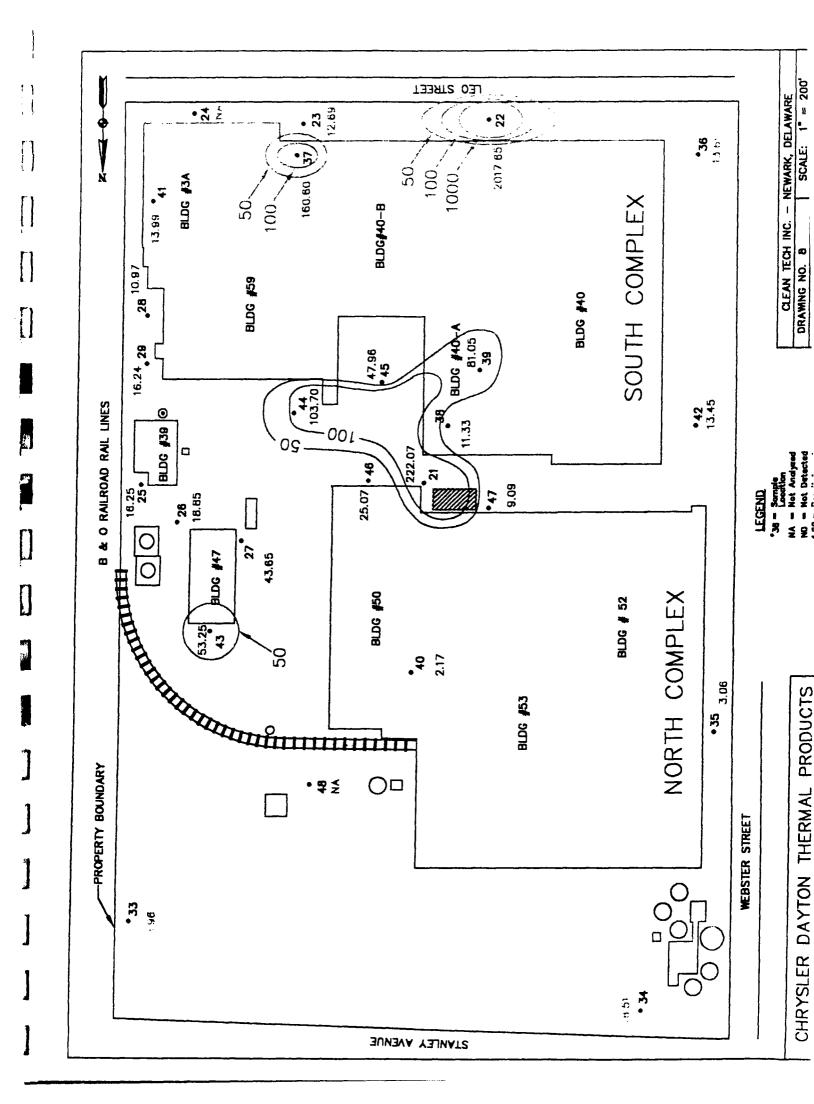
DRAWING 4


Soil Vapor Survey

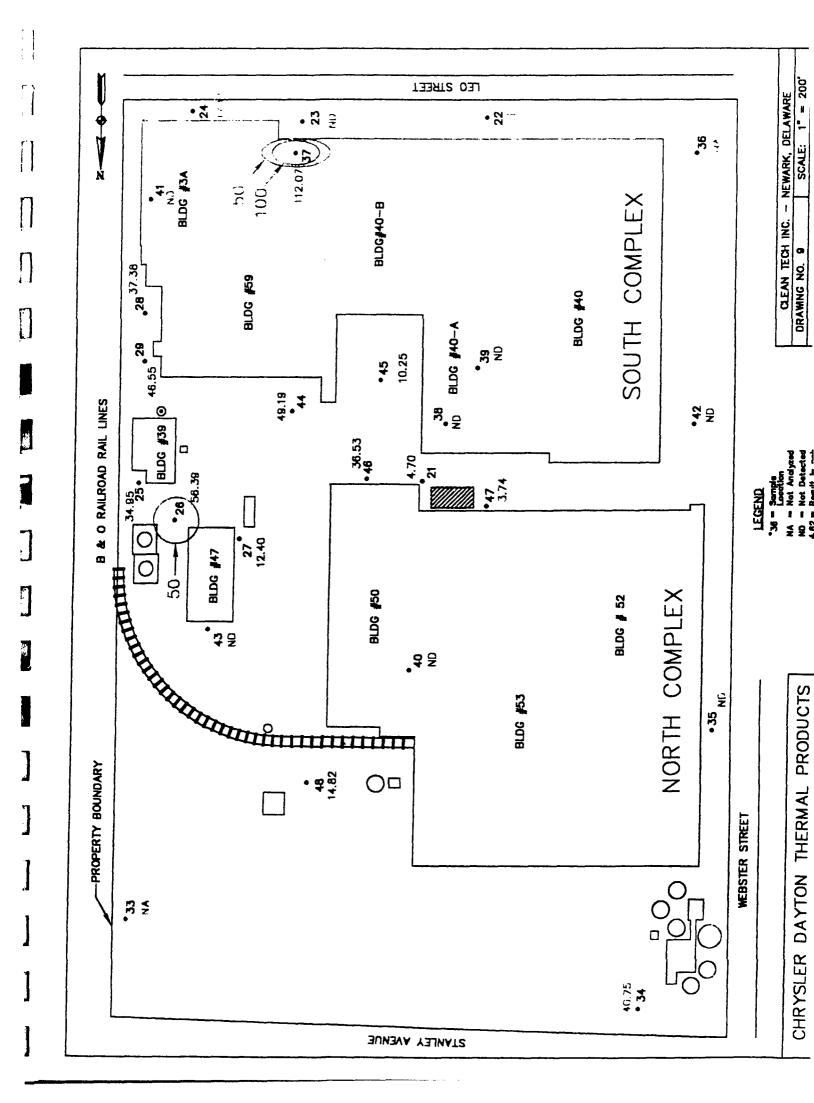
Total VOCs in Deep Vadose Zone
Chrysler Corporation


Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404

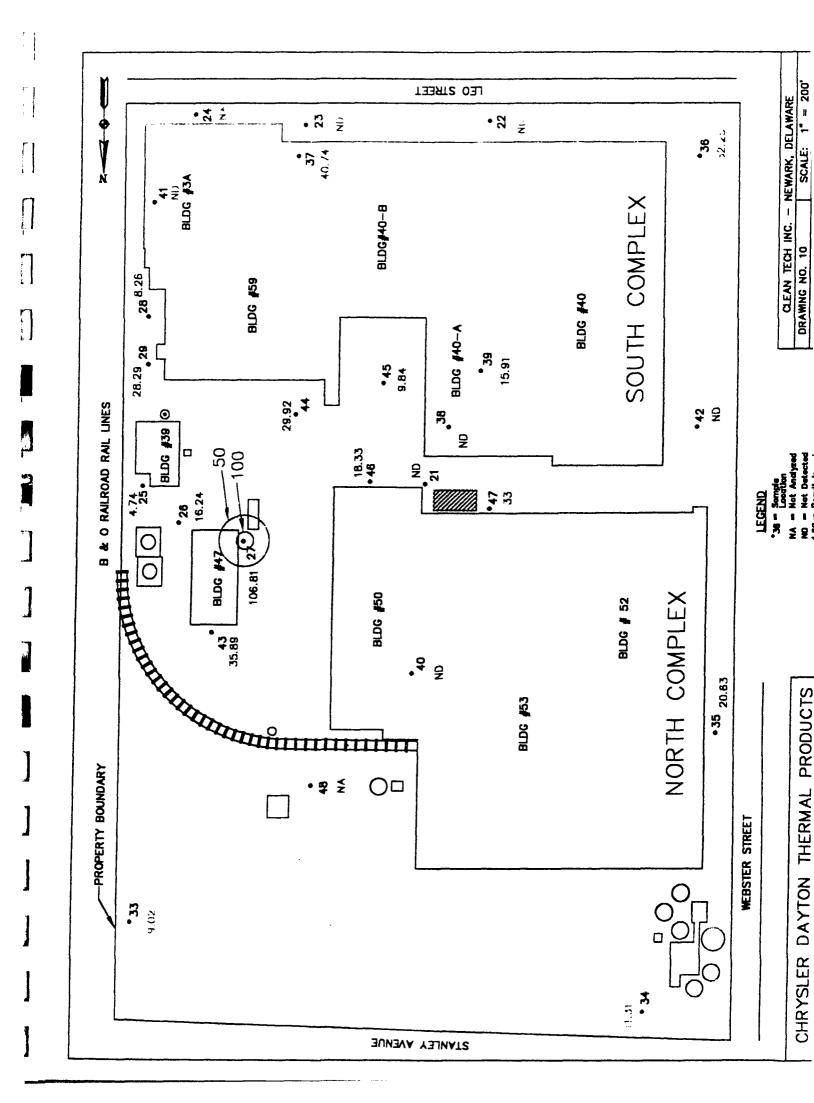

DRAWING 5 Soil Vapor Survey TCA in Shallow Vadose Zone Chrysler Corporation Dayton Thermal Products Plant 1600 Webster Street Dayton, Ohio 45404


DRAWING 6
Soil Vapor Survey
TCA in Deep Vadose Zone
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404

DRAWING 7 Soil Vapor Survey PCE in Shallow Vadose Zone Chrysler Corporation Dayton Thermal Products Plant 1600 Webster Street Dayton, Ohio 45404



DRAWING 8
Soil Vapor Survey
PCE in Deep Vadose Zone
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404


DRAWING 9

Soil Vapor Survey
Vinyl Chloride in Shallow Vadose Zone
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404

DRAWING 10

Soil Vapor Survey
Vinyl Chloride in Deep Vadose Zone
Chrysler Corporation
Dayton Thermal Products Plant
1600 Webster Street
Dayton, Ohio 45404

DRAWING 11 Soil Boring Locations Chrysler Corporation Dayton Thermal Products Plant 1600 Webster Street Dayton, Ohio 45404